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Abstract

The investigation of multiparticle processes is essential for deepening our under-
standing of fundamental particles and contributes to the pursuit of a grand unified
theory that aims to merge the four fundamental forces of nature. This report fo-
cuses on two key processes: electron-positron annihilation and proton-antiproton
pair annihilation, with particular emphasis on the latter. These processes involve
complex mathematical structures and advanced concepts in particle physics, in-
cluding group theory and gauge theories with local symmetries. Gluons, which
mediate the strong force, are central to this study. To examine the produced par-
ticles, their multiplicity distributions have been analyzed through both experimen-
tal and theoretical approaches within the framework of quantum chromodynamics.
Several theoretical models have been proposed, among which the two-stage model
is the most widely recognized. Furthermore, particle detection methods employed
at JINR are discussed in detail. The experimental data analysis was performed
using the CERN Root software.
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Chapter 1

Fundamentals of Multiplicity
Distributions I

1.1 Introduction

In recent years, particle physics has gained remarkable popularity, with an increas-
ing number of accelerators and high-energy projects being developed. As energy
levels rise, new decay channels are uncovered, leading to the discovery of previ-
ously unknown particles. This progress has driven the creation of new theories and
models, including quantum chromodynamics (QCD). Exploring the strong inter-
action offers valuable insights into the fundamental nature of matter and energy.

A major challenge in high energy physics is the production of a large number of
secondary particles. Multiparticle production holds valuable information about
the nature of the strong interaction, and its analysis relies heavily on statistical
methods. Through the study of these processes, the phenomenon of jets was dis-
covered. Jets can be investigated in any interaction involving energetic partons
(quarks and gluons), though they are most commonly studied in high-energy e+e−

annihilation.

e+e− → γ/Z0 → q̄q

The initial stage of parton evolution at high energies, known as the cascade stage, is
described by perturbative QCD. As parton energies decrease, they hadronize into
observable particles in the hadronization stage, which lies beyond perturbative
QCD. Konishi, Ukawa, and Veneziano studied multiparton spectra in QCD jets,
showing that gluon jets are softer than quark jets and exhibit an ordering among
final-state partons.
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1.2 QCD jets in the framework of Markov branch-

ing processes

1.2.1 Basic Mechanisms Governing QCD Jets

In the study of multiparticle production at high energies, QCD jets are treated
as Markov branching processes, with the QCD evolution parameter interpreted as
the natural evolution variable governing the process.

Y =
1

2πb
ln

[
1 + αb ln

(
Q2

µ2

)]
(1)

where 2πb = 1
6
(11Nc − 2Nf ) for a theory with NC colors and Nf flavors, as the

thickness value of a quark or a gluon that gives rise to a gluon or a quark jet.
There are three main elementary processes that contribute to the overall gluon

or quark distribution inside QCD jets with different weights:

• gluon fission: g → g + g, with A∆Y denoting the probability that a gluon
in the infinitesimal interval ∆Y will transform into two gluons

• quark bremsstrahlung: q → q + g, with Ã∆Y denoting the probability that
a quark in the infinitesimal interval ∆Y will radiate a gluon with the quark
continuing on its original trajectory with modified energy and momentum

• quark pair creation: g → q + q̄, with B∆Y denoting the probability that a
quark-antiquark pair in the infinitesimal interval ∆Y will be created from a
gluon

We assume that A, Ã, and B are Y -independent constants and that each individual
parton acts independently from the others, always with the same infinitesimal
probability.

1.3 Jet Evolution via Generating Functions

We introduce the infinitesimal generating functions for gluon jet and quark jet,
respectively, as

w(g)(ug, uq) =
∞∑

mg ,mq=0

a(g)mg ,mq
umg
g umq

q = (−A−B)ug + Au2
g +Bu2

q (2)
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w(q)(ug, uq) =
∞∑

mg ,mq=0

a(q)mg ,mq
umg
g umq

q = −Ãuq + Ãuqug (3)

Let us denote by Pmg ,mq ;ng ,nq(Y ) the probability that a system initially containing
mg gluons and mq quarks evolves into a final state with ng gluons and nq quarks
over a jet of thickness Y . Accordingly, the probability generating function for a
gluon jet is defined as:

G(ug, uq;Y ) =
∞∑

ng ,nq=0

P1,0;ng ,nq(Y )ung
g unq

q (4)

and the probability generating function for a quark jet is given by

Q(ug, uq;Y ) =
∞∑

ng ,nq=0

P0,1;ng ,nq(Y )ung
g unq

q (5)

When examining the evolution of the total parton population, which consists of
both gluons and quarks, through a thickness Y , a probabilistic approach enables us
to treat this population as composed of independent sub-populations. Each sub-
population behaves as though it originates from a single initial quark or gluon.
Therefore, the overall evolution can be understood as the sum of independent
parton populations, each initialized with one quark or gluon. This can be mathe-
matically expressed as follows:

∞∑
ng ,nq

Pmg ,mq ;ng ,nq(Y )ung
g unq

q = [G(ug, uq;Y )]mg [Q(ug, uq;Y )]mq (6)

Since the process is homogeneous in Y , the transition probabilities obey Chapman-
Kolmogorov equations:

Pmg ,mq ;ng ,nq(Y + Y ′) =
∞∑
lg ,lq

Pmg ,mq ;lg ,lq(Y )Plg ,lq ;ng ,nq(Y
′) (7)

For a gluon jet, we get

P0,1;ng ,nq(Y + Y ′) =
∞∑
lg ,lq

P1,0;lg ,lq(Y )Plg ,lq ;ng ,nq(Y
′) (8)
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and for a quark jet, we get

P1,0;ng ,nq(Y + Y ′) =
∞∑
lg ,lq

P0,1;lg ,lq(Y )Plg ,lq ;ng ,nq(Y
′) (9)

From (6) and (7), we get

G(ug, uq;Y + Y ′) = G[G(ug, uq;Y
′), Q(ug, uq;Y

′);Y ] (10)

Q(ug, uq;Y + Y ′) = Q[G(ug, uq;Y
′), Q(ug, uq;Y

′);Y ] (11)

From (2)–(5), we can see that

G(ug, uq; ∆Y ) = ug + w(g)(ug, uq)∆Y +O(∆Y ) (12)

Q(ug, uq; ∆Y ) = uq + w(q)(ug, uq)∆Y +O(∆Y ) (13)

Substituting (12) and (13) into (10) and (11), while substituting Y ′ with ∆Y ,
then dividing both sides by ∆Y and letting ∆Y → 0, we obtain

∂G(ug, uq;Y )

∂Y
=

∂G

∂ug

w(g)(ug, uq) +
∂G

∂uq

w(q)(ug, uq) (14)

∂Q(ug, uq;Y )

∂Y
=

∂Q

∂ug

w(g)(ug, uq) +
∂Q

∂uq

w(q)(ug, uq) (15)
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Chapter 2

Fundamentals of Multiplicity
Distributions II

2.1 Equations Describing the Evolution of QCD

Jets

We can recognize the forward Kolmogorov equations for the generating functions
of the transition probability Pmg ,mq ;ng ,nq(Y ) in (17) and (18). The corresponding
backward Kolmogorov equations follow from (13) and (14):

∂G

∂Y
= w(g)

[
G(ug, uq;Y ), Q(ug, uq;Y )

]
(16)

∂Q

∂Y
= w(q)

[
G(ug, uq;Y ), Q(ug, uq;Y )

]
(17)

Substituting (2) and (3) into (16) and (17), we obtain

∂G

∂Y
= −AG+ AG2 −BG+BQ2 (18)

∂Q

∂Y
= −ÃQ+ ÃQG (19)

We can find the probability for a gluon or a quark to produce ng gluons and nq

quarks in the interval Y +∆Y through the main elementary processes. For a gluon
jet
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P1,0;ng ,nq(Y +∆Y ) = (1− Ãnq∆Y − Ang∆Y −Bng∆Y )P1,0;ng ,nq(Y )

+ Ãnq∆Y P1,0;ng−1,nq(Y ) + A(ng − 1)∆Y P1,0;ng−1,nq(Y )

+B(ng + 1)∆Y P1,0;ng+1,nq−2(Y ) +O(∆Y )

(20)

Dividing both sides by ∆Y and letting ∆Y → 0, we obtain the following system
of differential equations

dP1,0;ng ,nq(Y )

dY
= (−Ãnq − Ang −Bng)P1,0;ng ,nq(Y )

+ ÃnqP1,0;ng−1,nq(Y ) + A(ng − 1)P1,0;ng−1,nq(Y )

+B(ng + 1)P1,0;ng+1,nq−2(Y )

(21)

For the gluon exclusive cross-sections in a gluon jet or a quark jet, we respectively
have the following

dP1,0;ng ,0(Y )

dY
= (−A−B)ngP1,0;ng ,0(Y ) + A(ng − 1)P1,0;ng−1,0(Y ) (22)

dP0,1;ng ,1(Y )

dY
= − ÃP0,1;ng ,1(Y )− (B + A)ngP0,1;ng ,1(Y )

+ ÃP0,1;ng−1,1(Y ) + A(ng − 1)P0,1;ng−1,1(Y )

(23)

The corresponding generating functions are

∂G

∂Y
= −AG+ AG2 −BG (24)

∂Q

∂Y
= −ÃQ+ ÃQG (25)

2.2 Explicit results in certain situations

While obtaining explicit solutions in terms of the generating functions (24) and
(25), or of the exclusive cross sections, (20), is generally challenging, it is possible
to derive approximate solutions for specific cases. These approximations prove to
be particularly intriguing and contribute to a deeper comprehension of the overall
problem.
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We make the approximation B = 0, A ̸= Ã ̸= 0, meaning that we don’t allow
gluons to split into quark-antiquark pairs. In other words, from the definition of
B, there is no room for flavors in the theory. Then (24) and (25) become

∂G

∂Y
= −AG+ AG2 (26)

∂Q

∂Y
= −ÃQ+ ÃQG (27)

The gluon exclusive cross-sections in a gluon jet or a quark jet satisfy the following

dP1,0;ng ,0(Y )

dY
= −AngP1,0;ng ,0(Y ) + A(ng − 1)P1,0;ng−1,0(Y ) (28)

dP0,1;ng ,1(Y )

dY
= −ÃP0,1;ng ,1(Y )− AngP0,1;ng ,1(Y )

+ ÃP0,1;ng−1,1(Y ) + A(ng − 1)P0,1;ng−1,1(Y )

(29)

with the following initial conditions

P1,0;1,0(0) = 1, P1,0;ng ,0(0) = 0, ∀ng > 1 (30)

P0,1;0,1(0) = 1, P0,1;ng ,1(0) = 0, ∀ng ≥ 1 (31)

2.2.1 Gluon Jet

From (28) and (30), we obtain

P1,0;1,0(Y ) = e−AY (32)

P1,0;ng ,0(Y ) = e−AY (1− e−AY )ng−1, (33)

where the average gluon multiplicity is ⟨ng⟩ = eAY .

The normalized exclusive cross-section for producing ng gluons is

σ
(g,0)
ng

σtot

= P1,0;ng ,0(Y ) =
1

⟨ng⟩

(
1− 1

⟨ng⟩

)ng−1

(34)

which corresponds to a Furry-Yule distribution. The variance is

D2 = eAY (eAY − 1) (35)
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Thus we can obtain the second correlative moment to be

f2 = e2AY − 2eAY (36)

and the corresponding generating function is

G =
∞∑

ng=0

ung
g P1,0;ng ,0(Y ) =

uge
−AY

1− ug(1− e−AY )
(37)

2.2.2 Quark Jet

From (29) and (31), we obtain

P0,1;0,1(Y ) = e−ÃY (38)

P0,1;ng ,1(Y ) =
µ(µ+ 1) · · · (µ+ ng − 1)

ng!
e−ÃY (1− e−AY )ng , (39)

where µ = Ã
A
and the average gluon multiplicity is ⟨ng⟩ = µ(eAY − 1).

We have the variance as

D2 = µeAY (eAY − 1) (40)

We obtain the second correlative moment to be

f2 =
⟨ng⟩2

µ
(41)

Then the normalized exclusive cross-section for producing ng gluons is

σ
(0,q)
ng

σtot

= P0,1;ng ,1(Y ) =
µ(µ+ 1) · · · (µ+ ng − 1)

ng!

[
⟨ng⟩

⟨ng⟩+ µ

]ng
[

µ

⟨ng⟩+ µ

]µ
(42)

This is a Polya-Egenberger distribution, where µ takes half-integer values.

The corresponding generating function is

Q =
∞∑

ng=0

ung
g uqP0,1;ng ,1(Y ) = uq

[
e−AY

1− ug(1− e−AY )

]µ
(43)
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Chapter 3

Electron-Positron Annihilation

3.1 Distribution function

Previously, we investigated the process of e+e− annihilation leading to the forma-
tion of quark and gluon jets.

e+e− → γ(Z0) → qq̄ → qg-cascade

Within our framework, the quark-gluon cascade was described using Markov branch-
ing processes as the fundamental method. Initially, we accounted for three princi-
pal elementary processes in QCD: gluon fission, quark gluon emission by a quark
and quark-antiquark pair creation [5]. According to our model, the gluon jet in
the stage of partons cascade fission is described by negative binomial distribution

Pm =
µ(µ+ 1) · · · (µ+m− 1)

m!

(
µ

µ+ m̄

)µ(
m̄

µ+ m̄

)m

(44)

In this context, µ represents the ratio of the probabilities of quark bremsstrahlung
to gluon fission, m̄ denotes the average number of produced gluons, and Pm cor-
responds to the probability of producing m gluons.

The second stage, hadronization, is modeled by a sub-narrow binomial distribution.
This selection is based on the analysis of experimental data from e+e− annihilation
at energies below 9 GeV, where a negative second correlation moment is observed.
The hadronic multiparticle distribution is expressed as:

PH
n = Cn

N

(
n̄h

N

)n(
1− n̄h

N

)N−n

(45)

where Cn
N is the binomial coefficient, n̄h the average hadron yield per parton, and

N the maximum number of secondaries.
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The convolution of these two stages — the cascade and hadronization — deter-
mines the multiparticle distribution of hadrons in e+e− annihilation. The probabil-
ity of obtaining a certain number n of produced charged particles from m partons
at the hadronization stage is given by

Pn = Ω

MG∑
m=0

µ(µ+ 1) · · · (µ+m− 1)

m!

(
µ

µ+ m̄

)µ(
m̄

µ+ m̄

)m

× Cn
(2+αm)N

(
n̄h

N

)n(
1− n̄h

N

)(2+αm)N−n
(46)

where Cn
(2+αm)N is binomial coefficient that equals to

Cn
(2+αm)N =

(2 + αm)N((2 + αm)N − 1) · · · ((2 + αm)N − n+ 1)

n!
(47)

and parameter α was included to distinguish hadrons produced from quark or
gluon.

3.2 Fitting e+e− Data

The multiplicity distribution given in equation (3) involves six parameters:

• µ represents the ratio of probabilities between quark bremsstrahlung (q →
q + g) and gluon fission (g → g + g)

• m̄ denotes the average gluon multiplicity

• n̄h indicates the average number of hadrons generated by a single gluon

• N specifies the maximum possible number of hadrons that can be produced
from one gluon

• α defines the ratio of the average number of gluons to quarks produced
(n̄g/n̄q)

• Ω serves as the normalization coefficient

14



It is evident that the final parameter, Ω, must be equal to 2 due to charge conserva-
tion. While the model and calculations allow for any number of produced particles
(both even and odd), in reality, the production of an odd number of charged parti-
cles is forbidden. Since the initial system is electrically neutral before the collision,
it must remain neutral after hadronization as well. This implies that all charged
particles should be produced in pairs (one positive and one negative), and thus,
probabilities corresponding to odd values of n are excluded from consideration.

We performed the fit for function (3) and determined the parameters using the
Fumili2 minimization package from CERN ROOT. The data were obtained from
[1]. The fitting procedure was carried out for four different energies: 14, 22, 34.8,
and 43.6 GeV. The C++ script used for the fitting is provided in the Appendix.

The results of the fitting are presented in Figures 1-4, where the red line repre-
sents the fitted equation and the black line displays the corresponding experimental
data along with their uncertainties. The derived parameters for each energy are
summarized in Table 3.1.

(a) Fig: 1 (b) Fig: 2

Figures 1-2: Distribution function for e+e− annihilation. The fitted
function is shown in red line, the experimental data [1] are shown with
black points (the curves are to guide the eye). Left: distribution for 14
GeV. Right: distribution for 22 GeV.
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(a) Fig: 3 (b) Fig: 4

Figures 3-4: Distribution function for e+e− annihilation. The fitted
function is shown in red line, the experimental data [1] are shown with
black points (the curves are to guide the eye). Left: distribution for 34.8
GeV. Right: distribution for 43.6 GeV

Table 3.1: Results of fitting - obtained parameters for different energies.

Energy
√
s,

GeV
14 22 34.8 43.6

µ 279219 3.174 0.6836 51.83

m̄ 0.0813 1.954 3.214 9.724

n̄h 4.468 4.675 6.038 2.427

N 27.85 27.8 402856 5.565

α 0.9792 0.21395 0.08254 0.4353

Ω 1.99666 1.99914 2.01421 2.00133

NDF 7 8 12 13

χ2 2.75432 1.66254 6.22071 5.38212
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Chapter 4

Proton-Proton Interaction

4.1 Proton-Proton Collision Framework

The proton-proton interaction leads to the production of particles with high mul-
tiplicity, where n ≫ n̄, and is a collective phenomenon in the high multiplicity
regime. Particles such as π+, π0, and π− are generated.

When discussing pp interactions, two key features must be considered:

• Each quark may exhibit a branching narrow binomial distribution.

• Each gluon may follow a Furry distribution.

Q =

[
1 +

m̄

µ
(1− z)−µ

]6
[G(z)]ng (48)

Gluons are the only participants in multiparticle processes, while quarks remain
as spectators.

Next, we will examine two important examples of pp reactions:

p+ p → π+ + n+ p

p+ p → π0 + p → π+ + n+ p

For quarks and gluons, the multiplicity distribution can be written as:

Pm =
m̄e−m̄

m!
(49)
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The equation for the simple scheme is:

Q(z) =
∞∑

m=0

m̄me−m̄

m!

[
1 +

n̄h

N
(z − 1)

]mN

(50)

where n̄h is the average multiplicity of hadrons which form single gluon and N is
the maximum number of hadrons that can be created from a single gluon.

The content of weak gluons is just 50 percent of the total number formed. They
are glued to valence quarks of secondary particles and give them mass. We see
that:

q + g → q + γ (Compton Scattering)

4.2 Fission of Gluons in the I-Scheme

We shall now discuss the I-scheme of gluon fission which has three stages to it.
They are:

4.2.1 Manifestation of Free Gluons

Its multiplicity distribution function is denoted by the expression:

Pm =
∞∑
k=1

e−k̄ k̄
k

k!

∞∑
n=2

1

m̄k

(m− 1)(m− 2) · · · (m− k)

(k − 1)!

(
1− 1

m̄

)m−k

Cm̄−k
αmN

(
n̄h

N

)n−2(
1− n̄h

N

)αmN−(n−2)

(51)
Now,

∞∑
k=0

e−k̄ k̄

k!
= 1 (52)

corresponds to the Poisson Distribution.∑ 1

m̄k

(m− 1)(m− 2) . . . (m− k)

(k − 1)!

(
1− 1

m̄m−k

)
corresponds to the Furry Distribution of the gluon jet. Lastly,

Cm−k
αmN

(
n̄h

N

)n−2(
1− n̄h

N

)αmN−(n−2)

This corresponds to the Binomial Distribution at the hadronization stage.
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If k = 0, the expression explicitly shows that the primary sources of secondary
particles are active gluons rather than valence quarks, where k⃗ represents the av-
erage number of gluons at the moment of collision, and m is the average number
of gluons after fission. Among all events, we focus on those with the maximum
number of hadrons, denoted by N . Although the number of gluon fissions is large,
the number of hadrons produced is constrained, as not all gluons result in hadrons
— some remain in quark-gluon systems.

Sources of soft photons predominantly produce secondary particles. The two pro-
tons act as leading particles, remaining conserved and not disappearing. In the
expression Cn−2

αmN , the term αm represents the actual number of gluons that convert
into hadrons.

4.2.2 Creation of Fission Gluons

The Furry distribution is employed to determine the number of gluons that do not
participate in gluon fission. Our primary interest lies in the gluons produced after
fission. Based on experimental data, the following average values are obtained:
ū = 2.5, m̄ = 2.6, n̄ = 2.5, N = 40, and

√
s = 10GeV.

An analysis of the data reveals that high-multiplicity events are extremely rare,
occurring with very low probabilities.

The presence of multiple gluons enables the production of numerous quark–antiquark
pairs, which subsequently form hadrons. Within this quark–gluon system, the for-
mation of baryons and mesons occurs with equal probability, and the ratio of their
production increases as the energy approaches unity.

4.2.3 Hadronization

The last and final stage is the hadronization process. It can be measured and
analysed accurately with the help of different hadronization parameters.

4.3 Fitting pp

The obtained function has 4 parameters:

• Ω is a coefficient of normalization (must equal 2 as for e+e− annihilation)

• m̄ is an average multiplicity of gluons

• n̄h is an average multiplicity of hadrons produced
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• N is the maximum possible number of hadrons produced from 1 gluon

The fitting was performed using the same tools as described previously. Data at
100 GeV were taken from [?], while results at 300 GeV were based on [?]. To
obtain probabilities instead of cross sections, one can use:

Pn =
σn∑
n σn

=
σn

σtotal

(53)

Results of fitting are shown in Figures 6-7. The red line represents the fitting
equation and the black one corresponds to experimental data with errors. Modeled
parameters for each energy are given in Table 4.1.

(a) Fig: 5 (b) Fig: 6

Figures 5-6: Function of multiparticle distribution for pp for different
energies. The red line shows result of fitting, the black one represents
experimental data. Left: 100 GeV with data [2], Right: 300 GeV with
data [3].
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Table 4.1: Results of fitting - obtained parameters for different energies.

Energy
√
s, GeV 100 300

m̄ 2.6336 3.5182

n̄h 1.7966 2.9169

N 3.044 6.6014

Ω 1.88329 1.7471

4.3.1 Involving Gluon Fission

The multiplicity distribution function can be expressed as a superposition of con-
tributions corresponding to different numbers of split gluons. With each succes-
sive gluon undergoing fission, the magnitude of the contribution decreases, i.e.,
Ω1 ≫ Ω2. The probability of obtaining n hadrons is given by:

Pn =Ω1

MG1∑
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e−mmm

m!
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(
nh

N

)n(
1− nh

N

)mN−n

+ Ω2

MG2∑
m=1

e−mmm

m!
Cn

2mN

(
nh

N

)n(
1− nh

N

)2mN−n
(54)

In this expression, the first term represents hadronization resulting from a single
gluon, whereas the second term accounts for hadronization following gluon fission.

Figure 7 illustrates the distribution functions of each individual component as well
as their combined effect. The contribution from gluon fission becomes particularly
significant in the region of high multiplicity.
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Figure 7: Experimental topological cross sections. The blue line repre-
sents contribution of gluons without fission, the green line shows role of
gluons with fission. The red line is superposition of both contributions
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4.4 Proton-Antiproton Annihilation

The pp̄ annihilation process involves a mechanism known as ”quark pairing.” A
proton consists of two up quarks and one down quark (u, u, d), while an antipro-
ton contains the corresponding antiquarks (ū, ū, d̄). Experimental observations [4]
have revealed the formation of three hadronic jets in such annihilation events. The
resulting quarks and antiquarks can pair up in various ways to form mesons. For
example, the quarks may combine into three neutral mesons (ūu, ūu, d̄d) or a com-
bination of two charged mesons and one neutral meson (ūd, ūu, d̄u). Additionally,
valence quarks from the initial state may also pair with quark-antiquark pairs that
spontaneously emerge from the gluon field.

It is important to note that mesons are generally easier to form than baryons, pri-
marily due to considerations from color confinement in quantum chromodynamics
(QCD). All hadrons must be color-neutral, which means the constituent quarks
must combine in a way that their color charges cancel out. In this context, it is
simpler for a quark to find a single color-matching antiquark to form a meson,
rather than finding two additional quarks with the appropriate color combinations
to form a baryon. Since mesons consist of two quarks, whereas baryons consist of
three, the formation of mesons is statistically more favorable. As a result, most of
the hadrons produced in such processes are mesons.

Let us denote the contribution from the process resulting in the production of
neutral particles as C0, and the contribution from the formation of two charged
particles as C2. The term C4 refers to the latter case involving the appearance of
sea quarks. The overall multiplicity distribution should account for the contribu-
tions from each of these processes.
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(55)

Experimental data [4] yield the contribution ratio C0 : C2 : C4 = 15 : 40 : 0.05.
The dominant process involves two charged particles, while neutral-only topologies
contribute less, and sea quark interactions are largely suppressed.
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Conclusion

This dynamics of particle annihilation and hadronization through the framework
of the Two Stage Model and the Gluon Dominance Model (GDM). By integrating
concepts from QCD and Markov branching processes, we have developed a com-
prehensive approach to describe both electron-positron annihilation and proton-
antiproton interactions. The model successfully accounts for the complex interplay
of valence quarks and gluons in pp-collisions, while also providing insights into the
hadronization process through various calculation methods, including those with
and without gluon fission.

The derivation of generation functions and multiplicity distributions, revealing
significant contributions from Binomial, Poisson, and Farry distributions. The
analysis of second correlated moments in electron-positron annihilation has pro-
vided deeper understanding of the underlying physics. Furthermore, the study
has extended to pp̄ annihilation, where quark pairing into leading particles (pions)
plays a crucial role in determining the final hadronic states.

Advanced topics such as the three-gluon decay of bottomium and the simulation
of hadronization parameters using CERN Root Software have been investigated,
demonstrating good agreement between theoretical predictions and experimental
data. The examination of intermediate charge topologies in pp interactions has
further enriched our understanding of these processes.

This work not only consolidates existing knowledge from Giovannini’s contribu-
tions but also provides a unified framework for analyzing different annihilation
scenarios, offering valuable tools for future research in high-energy particle physics.

24



Bibliography

1. Charged multiplicity distribution and correlations in e+e− annihilation at
PETRA energies (TASSO Collaboration, 1989) // Z.Phys.C - Particles and
Fields 45, 193-208

2. π+p, K+p and pp topological cross sections and inclusive interactions at 100
GeV using a hybrid bubble-chamber –spark-chamber system and a tagged
beam (W. M. Morse, V. E. Barnes, D. D. Carmony, R. S. Christian, A. F.
Garfinkel, and L. K. Rangan; A. R. Erwin, E. H. Harvey, R. J. Loveless, and
M. A. Thompson; 1977) // Physical Review D ; Volume 15, Number 1

3. pp interactions at 300 GeV/c: Measurement of the charged-particle multi-
plicity and the total and elastic cross section (A. Firestone, V. Davidson,
D. Lam, F. Nagy, C. Peck, and A. Sheng; F. T. Dao, R. Hanft, J. Lach, E.
Malamud, and F. Nezrick; 1974) // Physical Review D ; Volume 10, Number
7

4. STUDYOFMULTIPARTICLE PRODUCTION BYGLUONDOMINANCE
MODEL (E.S. Kokoulina, V.A. Nikitin) // arXiv.org/abs/hep-ph/0502224v1
24 Feb 2005

5. High energy antiparticle-particle reaction differences and annihilations (Rush-
brooke J.G. and Webber B.R.) // Physics Reports, V.44, No. 1., 1-92.

6. QCD jets as Markov branching processes (A. Giovannini, 1979) // Nuclear
Physics B 161 429-448

7. arXiv:hep-ph/0308139, E. Kokolina, V. Nikitin

25



Appendix

1 /**********************************************************************

2 * *
3 * Copyright (c) 2005 ROOT Foundation, CERN/PH-SFT *
4 *
5 *
6 **********************************************************************/

7 #include <iostream>
8 #include "TH1.h"
9 #include "TF1.h"

10 #include "TCanvas.h"
11 #include "TSystem.h"
12 #include "TRandom3.h"
13 #include "TMath.h"
14 #include "TGraphErrors.h"
15 #include "Math/MinimizerOptions.h"
16 Double_t fun(Double_t *x, Double_t *par) {
17

18 Int_t MG = 20;
19 Int_t n, k;
20 Double_t K1, K2, K3, K4;
21 Double_t N1, N2, N3, N4, N5, N6, N;
22 n = x[0];
23 Double_t S, K, C, Sum;
24 Double_t P0, PN, Pn;
25 K1=par[0]+par[1]; // kp+m_
26 K2=par[0]/K1; // kp/(kp+m_)
27 K3=par[1]/K1; // m_/(kp+m_)
28 K4=TMath::Power(K2, par[0]); // (kp/(kp+m_))ˆkp
29 N1=par[2]/par[3]; // nh/N
30 N2=1.-N1; // 1-nh/N
31 N3=N1/N2; // (nh/N)/(1-nh/N)
32 N5=TMath::Power(N2,2.*par[3]); // (1-nh/N)ˆ2N
33 S=1.;
34 // m=0
35 for (int i=0; i<n; i++)
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36 {S=S*(2.*par[3]-i)*N3/(i+1.);} // ((nh/N)/(1-nh/N))ˆn*2N(2N-1)...(2N
-n+1)/n!

37 P0=par[5]*K4*S*N5;
38

39 Sum=0.;
40 // m=1,2...
41 for (int m=1; m<=MG; m++)
42 {
43 K=1.;
44 for (int l=1; l<=m; l++)
45 {K=K*(par[0]+l-1.)*K3/l;} // (m_/(kp+m_))ˆm*kp(kp+1)...(kp+m-1)/m!
46 C=1.;
47 for (int p=1; p<=n; p++)
48 {C=C*N3*((2.+par[4]*m)*par[3]-p+1.)/p;} // (2+am)N((2+am)N-1)...((2+

am)Nn+1)/n!*((nh/N)/(1-nh/N))ˆn
49

50 N=TMath::Power(N2, (2.+par[4]*m)*par[3]); // (1-nh/N)ˆ(2+am)N
51 Sum=Sum+C*K*N;
52 }
53

54 PN=par[5]*K4*Sum;
55 Pn=PN+P0;
56 return Pn ;
57 }
58 void ee22() {
59 const Int_t npar = 6;
60 TF1 *f1 = new TF1("f1",fun,2,28,6);
61 f1->SetParameter(0,4.91);
62 f1->SetParameter(1,3.01);
63 f1->SetParameter(2,4.34);
64 f1->SetParameter(3,10.2);
65 f1->SetParameter(4,0.2);
66 f1->SetParameter(5,2.0);
67

68 Double_t xvalues1[14] = {2., 4., 6., 8., 10., 12., 14., 16., 18.,
20., 22., 24., 26.,

69 28.};
70 Double_t yvalues1[14] = {0.1631, 1.7797, 7.8243, 16.7981, 22.9196,

21.5560, 14.5702,
71 8.2160, 3.6614, 1.6538, 0.5892, 0.1637, 0.0697, 0.0355};
72 Double_t evalues1[14] = {0.0895, 0.2557, 0.5185, 0.7497, 0.8749,

0.8332, 0.6494,
73 0.4705, 0.2927, 0.1931, 0.1048, 0.0513, 0.0312, 0.0253};
74 for (int k=0; k<14; k++)
75

76 {
77 yvalues1[k] = yvalues1[k]/100.;
78 evalues1[k] = evalues1[k]/100.;
79 }
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80

81 TGraphErrors *gr1 = new TGraphErrors(14, xvalues1, yvalues1, 0,
evalues1);

82 ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Fumili2");
83 // ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2");
84 gr1->SetTitle("Multiple Distribution, 22 GeV");
85 gr1->Fit("f1");
86 gr1->Draw("ACP");
87 gr1->SetLineWidth(1);
88 gr1->SetMarkerStyle(20);
89 gr1->SetMarkerSize(1);
90 gr1->SetLineColor(1);
91 f1->SetLineWidth(3);
92 f1->SetLineColor(2);
93 TLegend *leg = new TLegend(0.5,0.8,0.7,0.89);
94 leg->AddEntry(gr1,"Pn");
95 leg->AddEntry(f1,"fitting");
96 leg->Draw();
97 }
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