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Abstract 
 During the practice the domain structure of ferromagnet thin films has been 

studied according to Ising model. The numerical realization of this model has been 

created. It has shown adequate behavior for different temperatures. 

Landau-Lifshitz-Gilbert (LLG) model has been under consideration in 

application to thin film dynamics. Magnetization film dynamic has been investigated 

for several cases of magnetic particles interaction conditions. The analysis of the 

difficult evolution has been carried out. 

 

Introduction 
Information technology plays a significant role in the modern world across all 

areas of human activity. Thin-film technologies have become the foundation of 

modern electronics, photonics, and spintronics. 

The main feature of all modern information processing devices is the 

nonlinear nature of the dynamic equations for these systems. Nonlinear equations 

require special approaches for their numerical solution, as well as for the selection 

of the mesh and time step. 

In this practice, attention was focused on modeling magnetic phenomena in 

ferromagnetic thin films. These films are understood as those for which the variation 

of magnetic characteristics with thickness can be neglected. Under this assumption, 

the problem becomes two-dimensional. The magnetic properties of the film are 

determined by the presence of a magnetic moment of atoms the film consists of. The 

presence of a magnetic moment of a charged particle is related to the presence of 

angular momentum of the particle or, in the simplest case, spin. The effects arising 

in magnetic systems and the dynamics of such systems are studied by spintronics. 

Therefore, modeling magnetic phenomena in thin films is a relevant task. 
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1. Ising model  

1.1. Microscopic Theory 
The simplest model of a two-dimensional spin system is the Ising model. 

Within this model, a value 𝑆𝑖   – the projection of the spin at the i-th node in a certain 

direction – is assigned to the nodes of a square lattice. In this model, the value of the 

projection takes on the values ± 1.  If we assume that the main contribution to the 

energy of the system comes from the pair exchange interaction of neighboring spins, 

then the energy of the system in this model, in the absence of an external magnetic 

field, can be expressed as follows: 

𝐸 = −𝐽 ∑ 𝑆𝑖𝑆𝑗,          (1) 

where the summation is performed over all neighboring nodes. Most often, four 

nearest neighbors are considered – two vertically and two horizontally. J is the 

exchange interaction energy of a pair of neighboring spins. Periodic boundary 

conditions are usually used. For the one-dimensional Ising model, an analytical 

solution for the canonical ensemble was obtained by Ising himself [1]. For the two-

dimensional case it was obtained slightly later by Onsager [2]. 

 This model has advantageous due to its relative simplicity and its ability to 

predict the presence of fundamental properties of ferromagnets within the structure 

of the system. Such properties include the presence of a domain structure, the 

existence of temperature regions with ferromagnetic and paramagnetic properties, 

and the transition from a paramagnetic state to a ferromagnetic state through a 

second-order phase transition for a two-dimensional system. 

 The Ising model is microscopic model; all parameters can be derived from the 

properties of both the spin particles themselves and the wave functions localized 

near the lattice nodes. However, for modeling relatively large inhomogeneous or 

nonequilibrium systems, this class of models is poorly suited due to the enormous 

number of particles. The Ising model, as a statistical model, can predict the 

thermodynamic properties of an equilibrium magnetic system, but it cannot describe 

nonequilibrium dynamics, which is of great importance for applied research. 
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1.2 Numerical Implementation  

To demonstrate the emergence of a domain structure in a thin film at low 

temperatures, a numerical program implementation was developed using the Monte 

Carlo simulation method in the Wolfram Mathematica software package. A 100х100 

node lattice with periodic boundary conditions was considered. Spin exchange 

interaction was considered only between neighboring nodes vertically and 

horizontally. Simulations were performed for 21 values of the parameter  𝜏 = 𝛽/𝐽 

ranging from 0.32, до 3.2,  representing the dimensionless thermodynamic beta 

normalized by the exchange energy. For each temperature value, the same randomly 

generated spin distribution on the lattice was used. At each step of the cycle in the 

algorithm a node was randomly selected and the spin value at that node was erased. 

A new spin value was chosen with the following probability: 

𝑝±(𝛽) =
𝑒−𝛽𝐸±

𝑒−𝛽𝐸++𝑒−𝛽𝐸−
,        (8) 

where 𝐸±- are the system energies corresponding to the spin value of the selected 

node. To allow the system’s energy to reach a saturation, a typical value for the 

necessary number of steps for this system is on the order of 106. Figure 1 shows the 

spin configurations at different temperatures and the dependence of the system 

energy on the step number for two different temperatures. It can be seen that with 

decreasing temperature (increasing parameter 𝜏), a domain structure forms. 

However, this model is statistically small for observing the jump in heat capacity at 

the second-order phase transition. 

  

 
Figure 1. Dependence of the system energy, calculated according to (1), on the step number for a) 𝜏 = 3.2 (low 

temperatures), b)𝜏 = 0.32 (high temperatures). Each figure shows the results of 10 algorithm realizations. c) Spin 

distribution at different values of the parameter 0.32 < 𝜏 < 3.2. 
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2. Continuous model of a magnetic system 

2.1 Description within a continuous medium 

 As mentioned earlier, the presence of spin in a charged particle allows us to 

introduce the particle’s magnetic moment to describe its interaction with a magnetic 

field. If we assume that electrons make the main contribution to the magnetic 

properties, then the magnitude of their magnetic moment is related to their spin as 

follows: 

µ = −𝛾𝑆ℏ𝑺    (2) 

 Let’s now suppose that we are interested in the state of each individual 

magnetic particle within a system. This is valid because the size of the probe of our 

magnetic property detector is much larger than both the magnetic particle itself and 

the distance between them. In such a case, we are interested in some average value 

of the magnetization in the region of our probe, created by individual elementary 

magnets. 

 Consider a region Ω containing a magnetic body. Let’s isolate a small volume 

dV within it, located at a point defined by the radius vector r. This volume, on the 

one hand, contains a thermodynamically large number of magnetic particles 

characterized by magnetic moments µ𝑖. On the other hand, it is small enough that 

the average value of the magnetic moment in the vicinity of the isolated volume 

changes smoothly. We call this average value of the magnetic moment the 

magnetization vector and define it as follows: 

𝑴(𝒓) =
∑ µ𝑖𝑖

𝑑𝑉
  (3) 

Thus, we arrive at a description of the magnetic system by specifying a vector 

field throughout the volume of the magnetic sample. At each point this vector field 

will interact with the external magnetic field as an isolated individual magnetic 

moment. The phenomenological Landau-Lifshitz-Gilbert (LLG) model is used to 

describe the dynamics of this vector field.  
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2.2 Landau-Lifshitz-Gilbert model 

 This model is phenomenological and attempts to describe phenomena in a 

dissipative system with strong interactions between individual subsystems. For an 

isolated magnetic moment in an external magnetic field H, the dynamic equation is 

given by: 

𝜕𝑴

𝜕𝑡
= −𝛾𝑴 × 𝑯.     (4). 

 The model of a particle’s magnetic moment is related to the model of a 

magnetic dipole, which not only describes the effect of an external field on the 

particle but also defines the magnetic field created by the particle itself. Therefore, 

if an initially isolated dipole is placed in an environment of other magnetic dipoles, 

the external field for this dipole in the right-hand side of equation (4) should be 

understood as both the magnetic field external to the system and the field created by 

all other sources, which depend on the magnitude of magnetization in other points 

of the system. If we want to limit ourselves to a local model, we postulate the 

hypothesis of a self-consistent effective magnetic field 𝑯𝑒𝑓𝑓(𝒓), which itself 

depends on the magnetization at that same point with radius vector r: 

𝜕𝑴

𝜕𝑡
= −𝛾𝑴 × 𝑯𝑒𝑓𝑓.    (5). 

 The form of  𝑯𝑒𝑓𝑓(𝒓) can be determined from a microscopic model of the 

interaction between the particles of the medium [3,4]. The effective field model is a 

Hamiltonian model, the basis for constructing the functional of which is the 

thermodynamic functional of the system’s free energy. Dissipation in the system is 

accounted for by specifying a suitable Rayleigh dissipation function, which leads to 

the appearance of an additional term in the system’s dynamic equation. 

 The final form of the dynamic equation can be written as follows: 

𝜕𝒎

𝜕𝑡
= −𝛾 𝒎 × 𝑯𝑒𝑓𝑓 +

𝛼

𝑀𝑠
𝒎 ×

𝜕𝒎

𝜕𝑡
,   (6) 

where 𝛼>0 – is the Gilbert damping parameter, which is a characteristic of the 

material. The microscopic model assumes the conservation of the magnitude of the 

magnetic moment of each particle, and the LLG model possesses this same property. 

𝑀𝑆 – is the saturation magnetization, representing the state when all magnetic 

moments in the considered small volume dV are aligned in the same direction. 

Equation (6) is written in a dimensionless form (normalized by 𝑀𝑆) for the 

magnetization vector 𝒎 = 𝑴/𝑀𝑠. 
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2.3 Types of interactions 

 The effective field 𝑯𝑒𝑓𝑓 in (6) is a function of magnetization according to the 

self-consistent field theory. For the main known magnetic materials to date, the 

macroscopic consequences of the interaction between the particles of the substance 

can be described by specifying the effective magnetic field in the form: 

𝑯𝑒𝑓𝑓 = 𝐴∇2𝒎 + 𝐾(𝒆𝐾 ∙ 𝒎)𝒆𝐾 + 𝑯 + 𝑯𝐷𝑀𝐼 + 𝑯𝑇.  (7) 

 The first term is related to the tendency of magnetic moments to align parallel 

to each other. It is directly obtained from the generalization of the Ising model to the 

Heisenberg spin model, where the energy is determined by the dot product of the 

spin vectors. Expanding this energy for small angles allows us to determine a 

simplified form of the interaction energy. In equation (7), A denotes the exchange 

stiffness coefficient, proportional to the exchange energy J in the Ising model (see 

section 1.1.). 

 The second term in equation (7) is related to the presence of anisotropy in the 

magnetic crystal. The simplest case of anisotropy is the presence of one preferred 

direction in the crystal, the direction of which is given by the vector 𝒆𝐾. The 

coefficient K can be either positive, in which case it is referred to as an easy-axis 

towards which the magnetic moments of the system tend to align, or negative, in 

which case it is referred to as a hard-axis, and the magnetic moments tend to align 

perpendicular to the specified direction. The third term in equation (7) describes the 

magnetic field external to the magnetic material, which would be present at that point 

if only this magnetic material were removed from the system. The fourth term in 

equation (7) describes the Dzyaloshinskii-Moriya interaction, which is relevant 

when studying specific materials. The fifth term in equation (7) reflects the 

interaction of the magnetic material with a current flowing through it from an 

external source. 

This effective field model is implemented in the Micromagnetics module of 

the commercially available software package COMSOL Multiphysics [5].  
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2.4 Micriomagnetics simulation 

2.4.1 External field 

To test the capabilities of the Micromagnetics module in COMSOL 

Multiphysics, calculations were performed within the framework of the LLG model 

for the dynamics of a section of thin film with dimensions of 100×100 nm in an 

external magnetic field perpendicular to the magnetic material. The magnetic field 

was defined as a 4-lobe spiral, smoothed in such a way that there was no uncertainty 

at the center and vanishing at the boundary of the magnetic material. Figure 2 shows 

the distribution of the external magnetic field. The field was chosen to be sufficiently 

weak (on the order of 103 A/m) to have a perturbative effect on the system in order 

to test the solver and mesh settings. The initial unit magnetization vector was set 

uniform across the film with initial state components 𝑚𝑥 = 𝑚𝑧 = 1/√2. Periodic 

boundary conditions were used. 

Figure 2. Distribution of the z-component of the external magnetic field in the film. 

An unstructured mesh with a total of 6282 elements was used to calculate the 

dynamics of this state, which corresponds to a mesh element size on the order of 2 

nm. Computations on a coarser mesh converged for this problem, but these 

parameters were chosen as the most suitable after a mesh convergence study. The 

temporal dynamics were considered for a time interval of 1 ns with a field 

distribution recording step of 10 ps. The time step in the solver did not exceed 0.1 

ps. The typical calculation time with these parameters was 30 minutes. 

Figure 3 shows some intermediate magnetization distributions in the sample; 

the characteristic time between two distinguishable states is on the order of 5 ps, 

which means that the field passes through approximately 200 states during the 

simulation time, each of which possesses a symmetry of the fourth-order axis. 
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Figure 3. Intermediate distributions of the z-component of the unit magnetization vector during intrinsic 

dynamics. 

To analyze the dynamics of the system, the distributions of the components of 

the normalized magnetization vector were read to file at all mesh nodes, after which 

a Fourier transform was performed over time. Figures 4a and 4b show the time 

dependence and Fourier spectra for two points: the center (0,0) and the “antinode” - 

the point with coordinates (25,10), where maxima for the z-component of the 

magnetization vector typically occurred. From the graphs, it can be seen that the 

spectrum is not continuous, but contains many harmonics, which indicates a 

complex, but not chaotic, evolution regime. In Figure 5b, precession with the Larmor 

frequency is clearly visible for the given parameters. 

  

 
Figure 4. a) Time dependence of the z-component of magnetization at reference points. b) Fourier 

spectrum of the signal. c) Three components of magnetization on a single scale. 

Figure 5a presents a map of the frequency distributions in the sample, 

constructed as follows: for each point, two frequencies with the highest intensities 

were selected from the Fourier spectrum (assuming that two main harmonics are 

sufficient for a rough but adequate reproduction of the system’s evolution over time), 

and maps of these frequencies were constructed and then superimposed on each 

other. The colored regions represent: 
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• yellow: regions in which the higher frequency has a higher intensity, 

• blue: regions in which the higher frequency has a lower intensity. 

Figure 5b takes into account frequencies with the third-highest harmonic 

intensity, and Figure 5c shows the Fourier spectra obtained for the blue and red 

points marked in Figure 5b, respectively. It can be seen that the system is a structure 

of a set of disjoint regions with sufficiently long-lived high-amplitude oscillations, 

separated by regions with faster oscillations. Also of interest is that the intensity 

distributions for the two frequencies (Fig. 5a) possess not only axial symmetry of 

the 4th order but also mirror symmetry with respect to the vertical and horizontal 

planes, while taking into account the third frequency preserves axial symmetry but 

violates mirror symmetry. 

 
 

 

Figure 5. Maps of a) two- and b) three-frequency distribution of contributions from intense harmonics. c) 

Dependence of the z-component of the unit magnetization vector on time at the corresponding points in figure b). 

2.4.2 Intrinsic dynamics of a complex initial state 

Calculations were also performed for the same film within the LLG model for 

dynamics in the absence of an external magnetic field. Now, the initial state itself 

was chosen as a 4-lobe spiral. The distributions of the x and z components of the 

unit magnetization vector in the initial state are shown in Figures 6a and 6b, 

respectively. 

  
Figure 6. Initial states of the a) x- and b) z-components of the unit magnetization vector in the calculation domain. 

The calculations were performed on a mesh with the same parameters. The 

temporal dynamics were considered for a time interval of 1 ns with a field 

distribution recording step of 1 ps. The time step in the solver did not exceed 5 fs. 



 

12 
 

This boundary value of the step ensured stable convergence of the solver throughout 

the calculation time. When increasing the maximum step size, the solution diverged 

or converged much slower, as the solver, in an attempt to find a suitable, even larger, 

time step, could make around 20 selection attempts. The typical calculation time 

with these parameters was 3.5 hours. The values of the interaction parameters are 

given in Table 1. 

Table 1. Interaction parameters in the LLG model.  

α γ, m/(𝑠 ∙ 𝐴) A, 𝐴 ∙ 𝑚 𝑀𝑠, A/m K, A/m 𝑒𝐾 

5 × 10−4 2.21 × 105 3.28 × 10−11 1.94 × 105 -3.88 × 104 (0,0,1) 

 Figure 7 shows some intermediate magnetization distributions in the sample. 

  

  
Figure 7. Intermediate values of the x- and z-components of the unit magnetization vector in the 

calculation domain. 

2.4.3 Dzyaloshinskii-Moriya interaction 

Separately, the dynamics of the initial state from the previous section were 

investigated when the Dzyaloshinskii-Moriya interaction was included in the model. 

The field distributions with an interaction parameter of D=0.01 A are presented in 

Figure 8. With the same mesh and solver parameters for a time interval of 15 ps, the 

computation time increases by a factor of 4-5. 
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Figure 8. Intermediate values of the x- and z-components of the unit magnetization vector in the 

calculation domain when considering the DM interaction. 

It can be immediately noted that the axial symmetry for the tangential 

component of magnetization is violated during its own dynamics. A small 

introduction of noise, for example, in the form of restructuring the mesh while 

maintaining its parameters, leads to the appearance of magnetization distributions 

that are close to each other in shape but rotated relative to each other by 90, 180, or 

270 degrees.   
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Conclusion 
During the practice, the main focus was on modeling magnetic phenomena in 

thin films under various conditions. The modeling was carried out in two stages. 

In the first stage, a program was created for the numerical implementation of 

the microscopic Ising model. This program predicts the presence of a domain 

structure in the temperature range below a certain critical temperature. It was only 

possible to calculate the structure of a statistically small system within a reasonable 

time. It did not allow observing signs of a phase transition in the thermodynamic 

quantities. However, qualitatively, this program correctly predicts the structure of 

the system. 

In the second stage, the dynamics of the magnetic system were simulated 

within the framework of the Landau-Lifshitz-Gilbert model for various system 

parameters. Particular attention was paid to analyzing the convergence of the 

numerical model. The correct selection of mesh and solver parameters depends not 

only on the geometric features of the computational domain but also on the 

considered interactions and states. 
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