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1 Introduction

Topological solitons are localized, stable solutions of nonlinear field equations, first studied in

the context of the Fermi-Pasta-Ulam problem and subsequently elaborated into a major branch

of modern theoretical physics. Such structures appear in a variety of systems from condensed

matter to high-energy theory, e. g., Skyrme models of baryons. Their stability is often topolog-

ically protected; thus, they are robust against perturbations.

This project explores topological solitons in nonlinear field theories, with a focus on the O(3)

sigma model, the baby Skyrme model, and the Skyrme model. Using stereographic projections,

we construct explicit multi-soliton solutions and analyze their energy densities, topological

charges, and stability. For the O(3) model, we derive N-soliton configurations via rational

holomorphic maps. In the baby Skyrme model, we numerically investigate profile functions for

Q = 1 solitons, comparing with known results in spontaneous symmetry breaking.Finally, we

derive the spherically symmetric Skyrmion solution, compute its baryon number, and discuss

its implications for holographic duality. Our work bridges analytical and numerical approaches,

highlighting the role of topology in soliton stability.

2 O(3) Nonlinear Sigma Model

2.1 Stereographic Projection

The triplet of real scalar fields φa = (φ1, φ2, φ3), is restricted to the sphere S2 via the constraint

φa · φa = φ2
1 + φ2

2 + φ2
3 = 1.

We use the stereographic projection to establish a correspondence between the points of the

surface of the sphere and the points of the complex plane (parametrized by the local Euclidean

coordinates (u,w)). To do so, we draw a straight line through the north pole N(0, 0, 1) and any

point A (φ1, φ2, φ3) on the surface of the sphere. This straight line intersects the plane at some

point B(u,w, 0). We can write equation of our line in R3:

u

φ1

=
w

φ2

=
1

1− φ3

(u,w) =

(
φ1

1− φ3

,
φ2

1− φ3

)
(1) (1)
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The inverse transformation takes a point B(u,w, 0) from the plane onto the sphere.

u (1− φ3) = φ1, w (1− φ3) = φ2

Using φ2
1 + φ2

2 + φ2
3 = 1, we get:

(u (1− φ3))
2 + (w (1− φ3))

2 + φ2
3 = 1

(
1 + u2 + w2

)
φ2
3 − 2

(
u2 + w2

)
φ3 +

(
u2 + w2 − 1

)
= 0

φ3 =
1− u2 − w2

1 + u2 + w2

φ1 =
2u

1 + u2 + w2
, φ2 =

2w

1 + u2 + w2

(φ1, φ2, φ3) =

(
2u

1 + u2 + w2
,

2w

1 + u2 + w2
,
1− u2 − w2

1 + u2 + w2

)
(2) (2)

Or, using the complex variable

WN =
φ1 + iφ2

1− φ3

= u+ iw (3) (3)

(u,w) =

(
1

2
(WN +W ∗

N) ,
i

2
(WN −W ∗

N)

)
(4) (4)

(φ1, φ2, φ3) =

(
WN +W ∗

N

1 + |WN |2
,−iWN −W ∗

N

1 + |WN |2
,
1− |WN |2

1 + |WN |2

)
(5) (5)

Analogously, for the south projection, we take point S(0, 0,−1), we get:

(u,w) =

(
φ1

1 + φ3

,
φ2

1 + φ3

)
(6) (6)

(φ1, φ2, φ3) =

(
2u

1 + u2 + w2
,

2w

1 + u2 + w2
,
1− u2 − w2

1 + u2 + w2

)
(7) (7)

Or, using
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WS =
φ1 + iφ2

1 + φ3

= u+ iw (8) (8)

we get:

(u,w) =

(
1

2
(WS +W ∗

S) ,
i

2
(WS −W ∗

S)

)
(9) (9)

(φ1, φ2, φ3) =

(
WS +W ∗

S

1 + |WS|2
,−iWS −W ∗

S

1 + |WS|2
,
1− |WS|2

1 + |WS|2

)
(10) (10)

We can establish a relationship between (3) and (8):

WS =
φ1 + iφ2

1 + φ3

=
WN +W ∗

N +WN −W ∗
N

WNW ∗
N

=
2

W ∗
N

(11) (11)

2.2 Energy Density

The energy density is given by:

E =
1

2
(∂µφ) · (∂µφ) =

1

2

[
(∂xφ)2 + (∂yφ)2

]
(12) (12)

Or, in terms of W and W ∗:

E =
|∇xyW |2

(1 + |W |2)2
=
|∂xW |2 + |∂yW |2

(1 + |W |2)2
(13) (13)

Using the complex variables z = x+ iy and z∗ = x− iy we get:

∂z =
1

2
(∂x − i∂y) , ∂z∗ =

1

2
(∂x + i∂y)

E =
|Wz|2 + |Wz∗ |2

(1 + |W |2)2
(14) (14)

It is possible to construct any N-soliton solution of the O(3) sigma model by holomorphic

map W = P (z)/Q(z) where P and Q are polynomials of degree at most N of the complex

coordinate z = x+ iy. For instance, using:

W =
(z − a)(z − c)
(z − b)(z − d)

(15) (15)
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where a, b, c, d are some complex parameters, we obtained 2-soliton solution.

(a) a = 1, b = 4, c = −1, d = −1 (b) a = −5, b = −4, c = −4, d = 2

(c) a = −5i, b = −4, c = 5i, d = 4 (d) a = −5i, b = −4, c = 4i, d = 2

Figure 1: Energy density distribution for different values of a, b, c and d

2.3 Eight Solitons Solution

We can generalize to a general N-soliton configuration. The corresponding holomorphic func-

tion W can be expressed as a rational map of degree N . For example, it has in general 4N + 2

real parameters that fix the position of the solitons in the R2 plane, their shapes and sizes as

well as relative orientations.

We can introduce a potential, that produces 8 solitons in the North and South projections. If in

the North, the potential has the form:

WN = A

[
8∑
i=1

1

z − zi

]−1
(16) (16)
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And, according with (11), the south projection is given by:

WS =
1

A

8∑
n=1

1

z∗ − zi
(16b) (17)

A chain of 8 solitons aligned on the x-axis is given by the mapping of the form

WN = A

[
7∑

n=0

1

z − (z0 + nd)

]−1
(17a) (18)

WS =
1

A

7∑
n=0

1

z∗ − (z0 + nd)
(17b) (19)

Figure 2: Chain of 8-soliton solution with A = 4, z0 = −3/5 and d = 1

2.4 Eight-soliton solution for a triangle

Considering the holographic map:

WN =
4

1
z

+ 1
z+ 1

2
−i + 1

z− 1
2
−i + 1

z−1 + 1
z+1

+ 1
z− 3

2
+i

+ 1
z+ 3

2
+i

+ 1
z−2i

(18a) (20)

An equivalent south pole projection is given by:

WS =
1

4

(
1

z
+

1

z + 1
2
− i

+
1

z − 1
2
− i

+
1

z − 1
+

1

z + 1
+

1

z − 3
2

+ i
+

1

z + 3
2

+ i
+

1

z − 2i

)
(18b)

(21)
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Figure 3: Energy distribution function for (17)

(a) φ1 component (b) φ2 component

(c) φ3 component

Figure 4: Field components of (17)
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3 Skyrmions

3.1 Baby Skyrme Model

The Lagrangian of the 2+1 dimensional baby Skyrme model is:

L =
1

2
(∂µφ

a)2 − 1

4
(εabcφ

a∂µφ
b∂νφ

c)2 − µ2(1− φ3) (22)

with the constraint:

φaφa = 1 (23)

The ansatz (rotationally invariant configuration) is:

φ1 = cos θ sin f(r), φ2 = sin θ sin f(r), φ3 = cos f(r) (24)

where (r, θ) are polar coordinates and f(r) is a profile function. The topological charge (or

winding number) for the baby Skyrme model in 2D is given by:

Q =
1

4π

∫
d2x εijε

abcφa∂iφ
b∂jφ

c (25)

In terms of polar coordinates (r, θ), the Jacobian determinant for the transformation is d2x =

rdrdθ. Rewriting the charge density in polar coordinates:

Q =
1

4π

∫
rdrdθ εijε

abcφa∂iφ
b∂jφ

c

Using the ansatz, we compute the derivatives:

∂rφ
1 = cos θ cos ff ′, ∂rφ

2 = sin θ cos ff ′, ∂rφ
3 = − sin ff ′

∂θφ
1 = − sin θ sin f, ∂θφ

2 = cos θ sin f, ∂θφ
3 = 0

The charge density involves the determinant:

εabcφa∂rφ
b∂θφ

c
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Computing term by term: For a = 1, b = 3, c = 2:

ε132 = −1, φ1∂rφ
3∂θφ

2 = (cos θ sin f)(− sin ff ′)(cos θ sin f) = − cos2 θ sin2 ff ′,

for a = 2, b = 3, c = 1:

ε231 = 1, φ2∂rφ
3∂θφ

1 = (sin θ sin f)(− sin ff ′)(− sin θ sin f) = sin2 θ sin2 ff ′,

and for other permutations:

φ1∂rφ
2∂θφ

3 = φ3∂rφ
2∂θφ

1 = φ3∂rφ
1∂θφ

2 = 0.

Adding up these terms, we get:

Q =
1

4π

∫
rdrdθ · 2 sin ff ′ =

1

2π

∫ ∞
0

dr sin ff ′ =
1

2
[cos f(∞)− cos f(0)], (26)

where, for f(0) = π and f(∞) = 0, we have Q = 1.

The energy functional for the 2+1 dimensional baby Skyrme model is:

E =

∫
d2x

{
1

2
(∂iφ

a)2 +
1

4
(εabcφ

a∂iφ
b∂jφ

c)2 + U(φ)

}
. (27)

The kinetic term is:
1

2
(∂iφ

a)2.

We compute the derivatives in polar coordinates. Squaring and summing the radial derivatives

over a, we get:

(∂rφ
a)2 = f ′2,

and for the angular derivatives:

(∂θφ
a)2 = sin2 f.

Since

∂iφ
a∂iφa = (∂rφ

a)2 +
1

r2
(∂θφ

a)2,

we obtain:
1

2

(
f ′2 +

sin2 f

r2

)
.
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The Skyrme term is computed before and the potential term is:

U(φ) = µ2(1− cos f).

Substitution into the energy functional yields:

E = 2π

∫ ∞
0

rdr

(
1

2
f ′2 +

2

r2
sin2 f(f ′2 + 1) + µ2(1− cos f)

)
. (28)

Variation of this functional with respect to f yields the following equation:

d

dr

[
(1− sin2 f

r2
)f ′
]
−
[

2 sin f cos f

r2
− sin ff ′2

r
− µ2 sin f

]
= 0

(1− sin2 f

r2
)f ′′ − 2 sin f cos f

r2
f ′2 +

sin f cos f

r2
− sin ff ′2

r
− µ2 sin f = 0(

r +
sin2 f

r

)
f ′′ +

(
1− sin2 f

r2
+
f ′ sin f cos f

r

)
f ′ − sin f cos f

r
− rµ2 sin f = 0 (29)

A graphic of f(v) vs v for several values of µ is shown in [Figure 1].

Figure 5: Profile functions f(r) of the Q = 1 baby skyrmions for various µ2.
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3.2 Skyrme Model

The Skyrme model is a (3+1)-dimensional field theory where the field is a mapping U : R3 →

SU(2), described by the Lagrangian:

L = −1

2
tr[(U †∂µU)(U †∂µU)] +

1

16
tr[(∂µU)U †, (∂µU)U †]2. (30)

The topological charge or baryon number is given by:

Q =
1

24π2

∫
d3x εijktr

(
(U †∂iU)(U †∂jU)(U †∂kU)

)
. (31)

A static, spherically symmetric ansatz for the Skyrmion is:

U(r) = eif(r)r̂·τ = cos f(r) + i sin f(r)(r̂ · τ), (32)

where r̂ · τ = τ i x
i

r
represents the orientation in the SU(2) group space. Taking derivatives:

Differentiating:

∂iU = (− sin ff ′)r̂aτa + i cos ff ′r̂aτa + i sin f∂i(r̂
aτa). (33)

We need to compute ∂i(r̂aτa). Since:

r̂a =
xa

r
,

we get:

∂ir̂
a =

δiar − xa∂ir
r2

=
δia − r̂ar̂i

r
.

Thus:

∂i(r̂
aτa) =

δia − r̂ar̂i
r

τa + εiab
r̂b

r
τ b.

Substituting this into ∂iU :

∂iU = iτa
(
r̂ar̂if

′ +
δia − r̂ar̂i

r
sin f cos f + εiab

r̂b

r
sin2 f

)
.

Since:

U † = cos f − i sin f(r̂aτa),
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multiplying,

Li = U †∂iU = iτa
(
r̂ar̂if

′ +
δia − r̂ar̂i

r
sin f cos f + εiab

r̂b

r
sin2 f

)
= iτalai, (34)

where:

lai = r̂ar̂if
′ +

δia − r̂ar̂i
r

sin f cos f + εiab
r̂b

r
sin2 f. (35)

We use the identity:

Tr(τaτ bτ c) = 2iεabc.

This allows us to simplify the expression for Q:

Q = − 1

24π2

∫
2iεijkεabclailbjlck d

3x.

Using the Levi-Civita contraction:

εijkεabc = 6(δiaδjbδkc + permutations),

we obtain:

Q = − 1

12π2

∫
6

[
f ′
(

sin 2f

2r

)2

+ f ′
sin4 f

r2

]
r2drdΩ

= − 1

2π2

∫ [
f ′

4 sin2 f cos2 f

4r2
+ f ′

sin2 f sin2 f

r2

]
r2drdΩ

= − 1

2π2

∫
f ′

sin2 f

r2
r2drdΩ = − 2

π

∫ ∞
0

f ′ sin2 f dr (36)

= − 1

π

∫ f(∞)

f(0)

(1− cos 2f) df =
1

π

[
f − sin 2f

2

]f(∞)

f(0)

.

If we impose the boundary conditions f(0) = π and f(∞) = 0, we get Q = 1, which cor-

responds to the spherically symmetric unit charge skyrmion. Setting the boundary conditions

f(0) = −π and f(∞) = 0, then Q = −1, the anti-skyrmion solution.

The Skyrme model is based on a field U(x) ∈ SU(2) and has the Lagrangian:

L =
F 2
π

16
Tr
(
∂µU

†∂µU
)

+
1

32e2
Tr
(
[U †∂µU,U

†∂νU ]2
)

+
m2

8
Tr(U − I). (37)
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The energy functional is given as:

E = −
∫
d3x

{
1

2
Tr[LiLi] +

1

16
Tr[Li, Lj]2 +m2Tr(U − I)

}
. (38)

Using Li = iτalai, we compute:

Tr[LiLi] = Tr[(−τalai)(−τ blbi)].

In order to compute the first term, we use the trace identity for Pauli matrices:

Tr(τaτ b) = 2δab,

we get:

Tr[LiLi] = 2lailai.

Now, computing lailai:

lailai = f ′2 +
2 sin2 f

r2
.

1

2
Tr[LiLi] = f ′2 +

2 sin2 f

r2
.

For the Skyrme term, the commutator is:

[Li, Lj] = iεabcτ clailbj.

Taking the trace:

Tr[Li, Lj]2 = 2(2 sin2 ff ′2 +
sin4 f

r2
).

So,
1

16
Tr[Li, Lj]2 =

1

8
(2 sin2 ff ′2 +

sin4 f

r2
) =

1

4
sin2 ff ′2 +

1

8

sin4 f

r2
.

And for the mass term:

m2Tr(U − I) = 2m2(1− cos f).

Finally, we get:

E = 4π

∫ ∞
0

dr

(
r2f ′2 + 2 sin2 f(1 + f ′2) +

sin4 f

r2
+m2(1− cos f)

)
. (39)
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The variation of this functional yields the ordinary differential equation of second order:

(r2 + 2 sin2 f)f ′′ + 2rf ′ − sin 2f(1− f ′2 +
sin2 f

r2
) +m2 sin f = 0. (40)

Figure 6: Figure 2: Plot of f(r) for the Skyrme model for different values of m.

4 Conclusions

Using stereographic projections (both north and south pole), we successfully constructed and

visualized the energy density distributions for 2-soliton and 8-soliton solutions. The field com-

ponents were shown to be independent of the projection choice, confirming the geometric

consistency of the approach. The solutions were generalized to N-soliton configurations via

rational holomorphic maps W = P (z)/Q(z), demonstrating the flexibility of this method for

arbitrary soliton numbers.

The profile function f(r) for the Q = 1 soliton was solved numerically, with results matching

theoretical expectations. As predicted, increasing the rescaled mass parameter µ2 led to a faster

decay of f(r), reflecting the stronger influence of the potential term. The spherically symmetric

Skyrmion solution was derived, and its baryon number was verified through direct computation
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of the topological charge. The energy density profile highlighted the role of the Skyrme term

in stabilizing the soliton against scaling collapse.

These results underscore the power of combining analytical methods like stereographic projec-

tions with numerical tools to study topological solitons across dimensions.
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