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Abstract 

The study investigates the dynamics of a Josephson junction coupled to 

nanomagnet system, focusing on the reorientation of the magnetic moment and the 

influence of model parameters such as the Josephson energy-to-magnetic energy 

ratio G and the Josephson frequency ωj. The study employs numerical simulations 

based on the Landau-Lifshitz-Gilbert (LLG) equation to analyze the systems 

behavior under varying the model parameters. Special attention is given to the role 

of initial conditions, the stability of dynamical points, and the interplay between 

superconducting and magnetic components in determining the systems evolution. 

A detailed analysis of stable and unstable points shows that an increase in G 

and ωj leads to dynamic stabilization and a complete reorientation of the magnetic 

moment easy axis. This phenomenon is explained through the Kapitza method, 

which highlights the stabilizing effect of high-frequency driving forces. 

Additionally, the study explores how the role of the effective field of the 

quasiparticle can affect the frequency dependance of the reorientation of the easy-

axis. 

The results demonstrate the potential for controlling nanomagnet dynamics 

using Josephson junctions, with implications for spintronics and quantum 

computing applications. By providing insights into the mechanisms governing 

magnetic moment reorientation, this work contributes to the development of novel 

devices that leverage hybrid superconducting-magnetic systems for advanced 

functionalities. 
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Introduction 

The study of superconductor-based heterostructures is one of the most 

dynamically developing areas of modern condensed matter physics. Systems 

combining superconducting and other various components are of particular 

interest, which makes it possible to study mutual influence and realize new states.  

Josephson junctions (JJ) occupy a central place in the study of such hybrid 

structures. Traditional SIS junctions (superconductor-insulator-superconductor) 

have evolved into more complex configurations, such as SFS junctions 

(superconductor-ferromagnetic-superconductor) and φ0 junctions, demonstrating 

unique coupling properties between superconducting current and magnetic 

moment.  

Mathematical modeling of resonant phenomena in such systems often uses a 

mechanical analogy with the classical Kapitsa pendulum. This model helps to 

understand the mechanisms of occurrence of resonances in systems with external 

periodic effects. Unique resonant phenomena are observed due to the interaction 

between the magnetic and superconducting subsystems. In particular, in the 

Josephson junction – nanomagnetic system, the analogy with the Kapitsa 

pendulum is manifested through the change of the position of stable equilibrium of 

the magnetic moment when the ratio between the Josephson and magnetic energies 

changes. Various numerical methods are used for modeling the magnetization 

dynamics in such systems. The fundamental tool remains the Landau-Lifshitz-

Gilbert equation (LLG), proposed in 1935 and continuously improved since then. 

This equation makes it possible to effectively describe a wide range of phenomena, 

from the simplest fluctuations of the magnetic moment to complex nonlinear 

effects and chaotic dynamics.  

In the field of studying SFS types of the Josephson junction, special 

attention is paid to the study of resonance phenomena and bifurcation processes in 

hybrid magnetic-superconducting structures, which can become the basis for the 

creation of new types of information processing devices.  
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1. Model 

We consider a short Josephson junction (JJ) with length l, coupled to a 

single-domain nanomagnet with magnetization “M” and easy axis in the 

y−direction. The nanomagnet is located at distance “a” from the center of the 

junction along the x-axis, as shown in figure 1.  

 

Figure 1 - Schematic diagram showing the geometry of the nanomagnet coupled to 

Josephson junction. 

The magnetic field of the nanomagnet alters the Josephson current, while the 

magnetic field generated by the Josephson junction acts on the magnetization of 

the nanomagnet. Thus, there is an electromagnetic interaction between the 

Josephson junction and nanomagnet. To investigate the dynamics in JJ-coupled 

nanomagnet, we solve numerically the LLG equation taking into account the 

effective field due to total tunneling current through the JJ. Thus, the magnetic 

moment component in the Landau–Lifshitz–Gilbert (LLG) equation is given by  

  
𝑑𝒎

𝑑𝑡
= −

𝜔F

(1+𝛼2)
(𝒎 × 𝒉𝑒𝑓𝑓 + 𝛼[𝒎 × (𝒎 × 𝒉𝑒𝑓𝑓)]) (1) 

where 𝜔F is ferromagnetic resonance frequency normalized to the characteristic 

frequency of the Josephson junction 𝜔c =  2𝜋𝐼𝐶𝑅/𝛷0, Ic is critical current of the 

JJ, Φ0 is the flux quantum, α is the Gilbert damping parameter. The magnetic 
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moment is normalized to the saturation magnetization 𝑀𝑠, and effective field 

components normalized to magnetic anisotropy energy are given by [1-3]: 

  

𝒉𝒙  = 0
𝒉𝒚  = 𝑚𝑦 𝒆̂𝒚                                                                             

𝒉𝒛  = 𝜖(sin (𝜔𝑗𝑡 − 𝑘𝑚𝑧) + 𝜔𝑗 + 𝑘𝑚̇𝑧)  𝒆̂𝒛

 (2) 

where  𝜖 = 𝐺𝑘, G = ϵJ/KanVF is the Josephson to magnetic energy ratio, ϵJ = 

Φ0Ic/2π, Kan is the magnetic anisotropy constant, VF is the volume of the 

nanomagnet, 𝜔𝑗 is the Josephson frequency normalized to 𝜔c, and 𝑘 =

2𝜋

Ф0
𝜇0𝑀𝑠𝑙 𝑉𝐹/𝛼√𝛼2 + 𝑙2, this parameter characterize the coupling between the 

Josephson junction and the nanomagnetic. The first term in hz represents the 

magnetic field, generated by the superconducting current, while the second and 

third terms represent the magnetic field due to quasiparticle current.  

2. Results and discussion 

2.1 Study of the reorientation of the easy axis 

We investigate the effect of energy ratio parameter “G” on the reorientation 

of the easy-axis in the superconductor-nanomagnetic system. The initial axis of the 

magnetic moment is along the y axis (my=1).  

 

Figure 2 – Dependence of the average value of the magnetic moment along the 

easy axis on the value of the parameter G at values ωj = 0.3; 0.5; 1 and ωj = 2; 7; 10 
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As can be seen from the figure 2, a complete reorientation of the magnetic 

moment is achieved by increasing the value of the parameter G. In addition to this, 

the value of G at which the complete reorientation is reached, takes place at lower 

value by increasing the Josephson energy. Here, we took ωF=1. It is worth noting 

that at ωj <1, it is observed that the energy of the Josephson junction is insufficient 

for rapid reorientation of the magnetic moment and reorientation shows irregular 

behavior. This indicates chaotic feature in this system when ωj <1 [4]. At ωj >>1, 

the reorientation becomes regular and the stable at lower values of G. 

It is necessary to investigate the process of reorientation at different values 

of ωj and G in different planes of the nanomagnet dynamics. In figures 3,4 and 5 

we illustrate a snapshots for the magnetization trajectories at different values of G 

for ωj=0.5; 1 and 2 respectively. The trajectory for the magnetic moment in the 

Josephson junction – nanomagnetic system can be changed dramatically by 

tunning the energy ratio parameter and Josephson frequency for example it can 

change from chaotic spirals to a trajectory of sink. The relationship between the 

parameters is manifested in the fact that an increase in the parameter G leads to a 

gradual stabilization of the system, moving from chaotic dynamics to more orderly 

modes of motion of the magnetic moment. The Josephson frequency ωj plays the 

role of a regulator of trajectory complexity – as it increases, the system reaches 

stable states faster. Gilbert damping ensures convergence of solutions to stationary 

points or stable limit cycles. 

Thus, the shape of the magnetization reversal trajectories is the result of the 

complex influence of all model parameters of the system. Chaotic dynamics is 

observed mainly at low values of G and intermediate or low values of ωj, while 

high values of G and ωj contribute to the formation of stable periodic regimes. 

These dependencies make it possible to purposefully control the dynamics of the 

system by selecting appropriate parameters, which is important for practical 

applications in spintronics and quantum computing. 
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Figure 3 – Demonstrate the 2D trajectory for magnetic moment (mx, my, mz) at G= 

15.7394, G= 78.5712 and G = 157.1110 

 

Figure 4 – Demonstrate the 2D trajectory for magnetic moment (mx, my, mz) at G= 

15.7394, G= 78.5712 and G = 235.6509 
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Figure 5 – Demonstrate the 2D trajectory for magnetic moment (mx, my, mz) at G= 

15.7394, G= 78.5712 and G = 157.1110 

2.2 Investigation of the influence of initial conditions 

The study of the influence of initial conditions on the dynamics of the 

magnetic moment in the Josephson junction–nanomagnetic system is important for 

understanding the nonlinear dynamics of the system. In this case (Fig.5-8), we 

analyze how different initial conditions affect the trajectories of the magnetic 

moment at a fixed value ωj = ωF = 1 and various values of the G parameter. The 

study is carried out using the numerical solution of the Landau–Lifshitz–Gilbert 

(LLG) equations.  

As can be seen from the presented figures, the initial conditions significantly 

affect the dynamics of the magnetic moment only at small values of the parameter 

G. However, as G increases, the system becomes less sensitive to initial conditions 

and tends to stable states. This effect is associated with an increased role of the 

Josephson energy, which prevails over the magnetic energy at high values of G. 

Increasing the Gilbert parameter (α) affects the dynamics of the Josephson 
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junction–nanomagnetic system, by accelerating the achievement of stable states 

(see figure 9).  

 

Figure 6 – (a) shows the 3D trajectory of the magnetic moment at the beginning of 

instance of time. (b) same as in (a) but at a later time. (c,d,f) are the trajectories in 

various projection. Here, G=7.5, α=0.1. 

 

Figure 7 – (a) shows the 3D trajectory of the magnetic moment at the beginning of 

instance of time. (b) same as in (a) but at a later time. (c,d,f) are the trajectories in 

various projection. Here, G=25, α=0.1. 
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Figure 8 – (a) shows the 3D trajectory of the magnetic moment at the beginning of 

instance of time. (b) same as in (a) but at a later time. (c,d,f) are the trajectories in 

various projection. Here, G=75, α=0.1. 

 

Figure 9 – (a) shows the 3D trajectory of the magnetic moment at the beginning of 

instance of time. (b) same as in (a) but at a later time. (c,d,f) are the trajectories in 

various projection. Here, G=7.5, α=0.5. 

Thus, the choice of initial conditions is important especially at low values of 

G, where the system exhibits rich nonlinear dynamics. 
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2.3 Investigation of stable points 

Stable and unstable points play a key role in the dynamics of the Josephson 

junction – nanomagnetic system. Stable points are the states of a system in which it 

can stay indefinitely in the absence of external disturbances. For example, the 

standard stable point corresponds to the lower position of the pendulum, in which 

the system tends to return to this position after small deviations. 

On the contrary, unstable points are characterized by the fact that even a 

slight deviation from them leads to a system moving away from this state. In a 

mechanical analogy, this corresponds to the top point of a pendulum, where any 

small disturbance causes a significant deviation. Mathematically, stability is 

determined through the projection of velocity towards a stationary point: if this 

projection is positive, the system is moving towards the point (stable), if it is 

negative, it is moving away from it (unstable). 

An important difference is the behavior of the system under an external 

periodic disturbance. Under certain conditions, an unstable fixed point can become 

dynamically stable thanks to the Kapitza method, which divides motion into "fast" 

and "slow" variables and introduces an effective potential. This explains how the 

system can stabilize in positions that were initially unstable. 

The difference between stable and unstable points is also manifested in their 

effect on the spontaneous reorientation of the easy-axis magnetization. The 

transition between different stable states occurs through overcoming energy 

barriers associated with unstable points, which demonstrates the complex 

dynamics of the system when changing parameters. After usinging spherical 

coordinate, by representing (mx, my, mz ) by (Sin(θ) Cos(φ), Cos(θ), Sin(θ)Sin(φ)) 

and applying Kpaitza method [5,6]. We can find the stable point in the proposed 

system. As shown in figures 10 when both superconducting current and 

quasiparticle current are taken into account for the effective field. The red stable 

points reduced to 1 stable point by increasing the Josephson frequency. This point 

corresponds to (mz=1). However, if one neglect the effective field of the 
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quasiparticle current (by neglecting the last two terms in hz, see Eq(2)), the reverse 

occurs, i.e, the reorientation is achieved by decreasing the Josephson frequency.  

 

Figure 10 – Phase planes: G=25, determined at the value of ωj = 0,4; 0,8; 8. 

 

Figure 11 – Phase planes: G=25, determined at the value of ωj=0,4; 0,8; 8. 

The behavior of the system is explained by the influence of the effective 

field caused by the total current, which includes both the superconducting current 

and the quasiparticle current. The effective field consists of two main components: 

the first is related to the overcurrent, and the second and third components depend 

on the quasiparticle current. These latter components are proportional to ωj, which 

increases their effect with increasing Josephson frequency. This effect contributes 

to the dynamic stabilization of the system and ensures the achievement of a new 

stable point. 
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Conclusion 

We investigate the dynamic properties of a system consisting of a Josephson 

junction and a nanomagnetic, with an emphasis on analyzing the behavior of the 

magnetic moment depending on model parameters such as the energy ratio G and 

the Josephson frequency ωj. 

Special attention is paid to the stability of the system, the influence of initial 

conditions, and the role of external factors such as the quasiparticle current. The 

study is aimed at understanding the mechanisms of reorientation of the easy axis of 

the magnetization and the conditions under which the system demonstrates 

controlled dynamics. In addition to this, the analysis shows that if both the 

superconducting current and the quasiparticle current are taken into account, an 

increase in the frequency and amplitude of the alternating current leads to a 

complete reorientation of the easy-axis magnetization, similar to the Kapitsa 

pendulum. In the absence of the contribution of quasiparticles, the system exhibits 

behavior similar to the Kapitsa function, where in order to reach a new stable 

point, it is necessary to increase the parameter G and decrease ωj. Thus, taking into 

account all the components of the effective field is key to managing the dynamics 

of such system. 

Understanding the processes that control the dynamics of the magnetic 

moment opens up new possibilities for creating devices capable of operating at 

high switching speeds and low power consumption. In particular, the study of 

stable and unstable points makes it possible to develop methods for controlling the 

orientation of the magnetic moment, which is a key aspect for the functioning of 

spin valves and other devices. 
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