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1 Introduction

This work presents a methodology for correcting track parameters in the Time-of-Flight
(TOF) detector for light mesons (pions and kaons) based on the analysis of residuals as a
function of particle momentum. The residual (ResX) is defined as the difference between
the measured X-coordinate of a particle’s track in the TOF detector and the expected
coordinate determined from track reconstruction. The quantity ResX(P/Q) denotes the
residuals in the X-coordinate as a function of the particle’s momentum P divided by its
charge (). The primary focus is on constructing analytical dependencies of residuals on
momentum.

2 Project Objectives

The aim of this study is to develop a method for correcting track parameters in the TOF
detector by:

e Analyzing residuals as a function of momentum.

e Constructing analytical dependencies for the width and center of residual distribu-
tions as a function of momentum.



3 Methods

3.1 Slicing Residuals by Momentum

To analyze residuals, a two-dimensional histogram of residuals (ResX) versus momentum
P/@Q was used. The histogram was sliced into momentum bins with a step of 0.5 GeV/c
using ROOT classes (e.g., TH2: :Projection). This approach yielded one-dimensional
histograms for each momentum range.
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Figure 1: Two-dimensional histogram of residuals ResX versus momentum P/
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Figure 2: Two-dimensional histogram of residuals ResY versus momentum P/



3.2 Obtaining One-Dimensional Histograms

Each momentum slice was converted into a one-dimensional histogram of residuals, which
exhibited a distribution close to Gaussian. These distributions varied in width and center
depending on the momentum.
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Figure 3: Examples of one-dimensional histograms of residuals for various momentum
ranges



3.3 Fitting Distributions

Each one-dimensional histogram was fitted with a Gaussian function:

f@) = A-exp (—ﬂ) ,

202

where A is the amplitude, p is the distribution center (in cm), and o is the width (in cm).
The parameters 1 and o were extracted for each momentum slice.

For negative momentum values (P/@Q < 0), significant noise was observed in the his-
tograms, likely due to low statistics, outliers, or systematic effects in track reconstruction.
This noise led to an increase in the width ¢ at large absolute momentum values. To min-
imize the impact of noise and obtain robust fit parameters, the tails of the Gaussian
distribution were trimmed. The fitting range was determined as follows:

e The mean (mean) and root-mean-square deviation (RMS) were calculated for each
histogram.

e The fitting range was limited to the interval from mean — range to mean + range,
where range = min(2.0,2 - RMS) (in cm).

An example of the trimming and fitting procedure in ROOT is shown below:

Double_t mean = hSlice->GetMean () ;

Double_t range = std::min(2.0, 2 * hSlice->GetRMS());
Double_t xMin = mean - range;

Double_t xMax = mean + range;

TF1* fGaussOnly = new TF1("fGaussOnly", "gaus", xMin, xMax);

fGaussOnly->SetParameters (hSlice->GetMaximum (), hSlice->GetMean ()
, hSlice->GetRMS());

hSlice->Fit (fGaussOnly, "RQ");

Trimming the tails eliminated the influence of anomalous events, preserving the main
part of the Gaussian distribution, which ensured more accurate determination of the
parameters 4 and o.
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Figure 4: Example of fitting a one-dimensional histogram with a Gaussian function




3.4 Constructing Dependencies

Based on the extracted parameters p and o, dependencies of the distribution width and
center on momentum P/ were constructed. Due to differences in the behavior of distri-
butions for positive (P/Q > 0) and negative (P/Q < 0) momenta, caused in particular
by noise at negative momenta, these cases were considered separately. This approach
allowed for a more accurate description of the momentum’s influence on residuals and
identification of possible systematic effects.
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Figure 5: Dependence of the width ¢ (in cm) on momentum P/Q (in GeV/c) for positive
and negative momenta
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Figure 6: Dependence of the center p (in cm) on momentum P/Q (in GeV/c) for positive
and negative momenta



3.5 Fitting Dependencies

The obtained dependencies o(P/Q) and u(P/Q) were fitted with various functions to
achieve the best agreement with the data, particularly in the region of low absolute
momentum (|P/Q| =~ 0).

For the center dependence u(P/Q), an exponential function with a linear term was
used:

fulp) =a+b-exp(—c-p)+d-p,

where a, b, ¢, and d are fit parameters, and p is the momentum P/Q in GeV/c. The
linear term d - p accounts for possible linear shifts in the distribution center with changing
momentum.

For the width dependence o(P/Q), a linear combination of exponentials was applied:

fo(p) =a+b-exp(—c-p) +e-exp(—f-p),

where a, b, ¢, e, and f are fit parameters. This functional form provides a more accurate
description of the complex behavior of the distribution width, especially near low absolute
momenta, where residuals exhibit non-monotonic behavior.

The choice of these functions is justified by their ability to accurately describe the
behavior of residuals in the low-momentum region, where significant changes in o and
i are observed, caused, in particular, by noise and systematic effects. The resulting
analytical expressions were used to correct track parameters in the TOF detector.
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Figure 7: Fitting of u(P/Q) for ResX
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Figure 8: Fitting of o(P/Q) for ResX

Figure 9: Fitting of the dependencies u(P/Q) and o(P/Q) for positive and negative
momenta (ResX)

A similar approach was applied to analyze residuals in the Y-coordinate (ResY). Two-
dimensional histograms of ResY versus momentum P/ were sliced into bins, and one-
dimensional histograms were constructed for each bin and fitted with a Gaussian function.
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Based on the fit parameters (u and o), the dependencies u(P/Q) and o(P/Q) for ResY
were obtained, which were also fitted with exponential functions with a linear term for
p(P/Q) and a linear combination of exponentials for o(P/Q). These dependencies, shown
in Figures 10, 11, exhibit behavior similar to that of ResX, confirming the applicability
of the developed method to both coordinates.
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Figure 10: Fitting of pu(P/Q) for ResY
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Figure 11: Fitting of o(P/Q) for ResY

Figure 12: Fitting of the dependencies p(P/Q) and o(P/Q) for positive and negative
momenta (ResY)

4 Results

The analysis yielded the following results:
e One-dimensional histograms of residuals for each momentum slice.

e Dependencies of the width o and center g on momentum P/Q), separated for positive
and negative momenta.

e Analytical expressions for residual corrections based on fitting with an exponential
function with a linear term for p(P/Q) and a linear combination of exponentials for

o(P/Q).

5 Discussion

The obtained dependencies enable the correction of track parameters in the TOF detec-
tor, accounting for particle momentum. Separate consideration of positive and negative
momenta revealed differences in residual behavior, possibly related to noise or systematic



effects. The use of an exponential function with a linear term for pu(P/Q) and a linear
combination of exponentials for o(P/Q) ensured high accuracy in the approximation,
particularly in the low-momentum region. Potential limitations of the method include:

e The influence of background on the accuracy of histogram fitting.
e Limited statistics in some momentum ranges, especially for P/ < 0.

e The need to verify the applicability of the chosen functions across all momentum
ranges.

6 Conclusion

The developed method enables effective correction of track parameters in the TOF de-
tector for light mesons. Analytical dependencies of residuals on momentum, constructed
separately for positive and negative momenta using an exponential function with a linear
term and a linear combination of exponentials, can be used to improve the accuracy of
measurements in the BM@N experiment. Further optimization of the method is recom-
mended, taking into account background effects and additional momentum ranges.

This analysis was performed for the entire TOF detector, which allowed obtaining gener-
alized dependencies of residuals on momentum. In the future, it is planned to conduct a
similar analysis for individual modules of the TOF detector to account for possible local
features and enhance the accuracy of track parameter corrections.
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