

JOINT INSTITUTE FOR NUCLEAR RESEARCH
Veksler and Baldin laboratory of High Energy Physics

FINAL REPORT ON THE
INTEREST PROGRAMME

Application of machine learning methods to
reconstruct events in the BM@N experiment

Supervisor:
Dr. Sergei Merts

Student:
Anatoly Aleksandrov, Russia,
Saint-Petersburg State
University

Participation period:
March 03 – April 20, Wave 12

Dubna, 2025

Abstract	

3

Introduction	

3

Project Goals	

3

Scope of Work	

3

Methods	

4

Developing a tracker architecture for clustering hits	

4

Preparing data for model training and testing	

5

CNN + LSTM + Attention probabilistic tracking model	

6

Modernization of the model for parallel track construction by a decision tree	

8

Tracker training and testing	

8

Two-stage training	

9

Results	

9

Conclusion	

9

References	
9

Abstract

 This work concludes to investigate the possibility of efficient particle tracking in the
BM@N experiment using machine learning techniques. To train and test machine learning
models, datasets were developed based on modeled data via bmnroot. Various scripts
were created to work with bmnroot, automating, processing the bmnroot data, extracting
the parameters required for training and also PostgreSQL database management system
was used to efficiently store the data, add metadata and extract data using filtering.
Computational parallelization, data caching technologies were used to be able to generate
training examples. The possibility of particle tracking was investigated on neural network
models: RNN, LSTM, GNN, Transformer, hybrid models using several different
architectures. An attention mechanism was added to the probabilistic model, which is
applied in large language models (LLMs). A modular architecture has been proposed that
separates a probabilistic model trained on bmn data and a decision model that builds
tracks.

Introduction

 Track reconstruction in the BM@N experiment is an important part for further
analysis of the experiment, particle identification. For tracking in the current bmnroot build
we use the Kalman filter, it is a recursive filter that estimates the state of a linear dynamical
system using a number of inaccurate measurements made with errors distributed
according to the normal law, to estimate the belonging of a count to a track we use the chi-
square criterion [1], which is the most popular particle tracking algorithm at the moment.
Due to the large number of hits, multiple detectors (time layers), this algorithm requires
long computational time. Machine learning based models have been proposed to speed
up and improve particle tracking.
 Neural network models have already been used in particle tracking, the TrackNET
model was developed [2], using CNN and RNN architectures, the input data is a candidate
track, at the output the network returns the coordinates of the center and the size of the
semi-axes of the ellipse, in which
at the next detector station it will be necessary to search for the continuation of the track (a
hit belonging to the track), but it was not possible to achieve the accuracy of the Kalman
filter, the performance of the model was tested only on GEM detectors, which is much less
detectors and data than in the current BM@N experiment. So the relevance and
importance of advancing research in this area of particle tracking in the BM@N experiment
remains.
 The task of particle tracking can be divided into two parts: finding and fitting. The first
part is clustering of hits (combining hits into tracks), the second part is extrapolation of
tracks.
 The program code is written in Python, and the PyTorch package is used for machine
learning.

Project Goals

• Create a neural network particle tracker for the current state of the BM@N experiment.
• Improve the speed of particle tracking.
• Increase tracking efficiency.

Scope of Work

 The particle tracker under development will be trained on data from the BM@N
experiment and is intended for use on this experiment. All results are obtained on bmnroot
data.

Methods

• Development of datasets for training neural network models on bmnroot data.
• Development of neural network model architectures for particle tracking.
• Model training and testing using various metrics.

Developing a tracker architecture for clustering hits

 kNN (k Nearest Neighbours) and DBSCAN (Density-based spatial clustering of
applications with noise) are the most popular metric-based clustering algorithms. Unlike
kNN, DBSCAN can cluster data into different geometric structures, such as tracks, as well
as filter noise, so the choice is obvious. On the test conducted on bmnroot data DBSCAN
with conventional spatial clustering did not prove to be an accurate solution for tracking,
but it is good at grouping hits into pairs or triples, which can be useful for pre-processing
hits and filtering noise, it can also be parallelized, but it still has a sufficient time
complexity, especially considering that additional algorithms will need to be applied for
further track reconstruction, so the use of classical clustering algorithms was decided to be
discouraged.
 The multilayer perseptron model alone is of little use in this task, as it has a fixed
number of inputs. If there are a variable number of tracks in the events, then we will have a
variable number of hits (even if there were always only a couple of tracks, it is worth
remembering the noise hits). Let's imagine a linear binary classifier (outputs 1 if a track, 0
if not a track), which will take as much data as the maximum number of tracks
encountered in the trials as input (or even more by a factor of several, to be sure),
excluding that the input limit of this classifier will ever be crossed. But then in most cases
the input data will be zero, training such a classifier will be ineffective, because most of the
weights will be undertrained. It is possible to make a classifier with the number of inputs
equal to the number of detectors and search all hits, but a complete search of hits on each
detector will take a long time and such a model will be inefficient.
 We need a model that has a small and fixed number of hidden layers, but can
accept variable length data or a large amount of data at once that is processed
sequentially. Such models of neural networks exist, they are recurrent neural networks and
convolutional neural networks.
 Работу реккурентной сети можно рассмотреть на схеме (Рис. ?).
 The idea of the new modular recurrent tracker is to train some probabilistic model
that will sequentially take hits from detectors as input and output the probability with which
this hit belongs to the currently collected track. Another module, called decision tree, will
use the probabilistic model to build tracks. At the beginning of tracking all hits from the first
detector are sent in parallel to the input of the probabilistic model, so that all possible
tracks will be built immediately in parallel, then the hits from the next detector are
searched, the indexes of hits with the highest probability for certain tracks are memorized
and added to the model, if suddenly no hits with good probability are found, then the
hidden layers of these tracks are not updated. Selectively updating the hidden layers
requires the development of separate methods.
 The move to a modular system was motivated by the problem of the single tracker
model, which is the complexity of training it. To process tracks from a complete experiment
event, it is necessary to loop through the hits, while having to reset the last state of the
hidden layer if the hit is incorrect in order to continue building the track. Such
manipulations interfere with the computation of gradients. Only by designing an
architecture with selective update of hidden layers, without reset functions, was it possible
to train the tracker at the decision tree level. Also, the modularity of the tracker was

convenient for testing different probability model architectures without the need to copy the
code.
 The probabilistic model is trained on data with good and bad tracks to learn to
identify features that correspond to the tracks.
 A model based on a three-dimensional CNN was also implemented, covering the
entire detector region with a mesh, but this method was not completed, since traversing
the entire mesh at most zero points by the kernel is clearly unnecessary, it is necessary to
refine the model using sparse matrices.
 Also the developed model based on graph neural networks was not tested as part
of the work.

Preparing data for model training and testing

 The run_sim_bmn.C and run_reco_bmn.C macros of the bmnroot package are
used to generate the BM@N experiment model data. The macros are run in multiple
Docker containers for better efficiency, once they are completed, a macro is run to write
data to a PostgreSQL database. The table is populated with the coordinates of the hits
from the reconstruction data, a label indicating whether it is test data or training data; the
momentum of the particle, the track number that corresponds to the Monte Carlo point of
the particle associated with the reconstruction hit.

 A dataset is written based on this data to train a recurrent probabilistic model. Using
one SQL query, we unload from the database all hits with track_id not equal to -1 (non-
noise hits), group them by track_id, sort by z-coordinate of hits, leave the groups with the
number of hits more than 4, these are the tracks we are interested in the experiment. We
will use another query to determine the size of the dataset. When there are too many
tracks in the database for a single upload to memory (or if there is a need to run the
training on user computers), this module in the code can be modified to upload and
process the data in parts. Next, using the multiproccesing module, we create streams with
the formation of good and bad examples. For good tracks, we create a tensor with ones
labels, align the data by augmenting it with zeros to a uniform length to be able to form
data packets used in training iterations. For bad tracks, we choose a random number from
1 to n (some parameter) denoting the number of bad hits in the training track, take the hits
not belonging to the track but from a common event and insert them into this track in
random places, keeping an increasing sequence along the z-coordinate.
 A program handler executing in multithreaded mode writes data to PyTorch files in
tensor packages when the amount of processed data equals the desired package size, or

Fig. 1. View of the table with modeling data

when the thread terminates. Then, when the dataset is reused for training, this data can be
subloaded without having to re-process hits and create examples, or new ones can be
created if the database has been updated.
 A dataset has also been developed to test a decision tree that produces hits by
event and has a method for checking the correctness of tracks.

 CNN + LSTM + Attention probabilistic tracking model

 The model takes as input a batch of hits of
the estimated track, the batch is first processed
by a convolutional layer that detects features
specific to the detector layer. In model testing, it
is found that this layer does not improve the
tracking results compared to the model based
only on LSTM and attention mechanism, but it is
suggested to improve the model by explicitly
storing previous hits and processing the data
through CNN along the track. CNN performs
better on local features than the recurrent
network model.
 Additional LSTM inputs are hidden layer
inputs. Separately, layers are stored before data
is added and after if the hit did not meet
expectations. To reset the state, the previous
hidden layer is input.
 Self-attention mechanism is used (labled
like MultiheadAttention on scheme). The
attention mechanism takes 3 tensors. The first
tensor Q (Query) is responsible for what we
need to find. Tensor K (Key) what attribute to
search for. Tensor V (Value) what information to
provide. The self-explanation is to pass the
same tensor to the 3 inputs of the mechanism.
 The output of the model uses a sigmoidal
activation function to return a value in the range
[0,1] to match the probability.

Sequential

LSTM

MultiheadAttention

Sequential

input-tensor
depth:0 (1, 20, 3)

permute
depth:1

input: (1, 20, 3)

output: (1, 3, 20)

Conv1d
depth:2

input: (1, 3, 20)

output: (1, 64, 20)

InstanceNorm1d
depth:2

input: (1, 64, 20)

output: (1, 64, 20)

ReLU
depth:2

input: (1, 64, 20)

output: (1, 64, 20)

permute
depth:1

input: (1, 64, 20)

output: (1, 20, 64)

lstm
depth:2

input: (1, 20, 64), 2 x (6, 1, 256)

output: (1, 20, 512), 2 x (6, 1, 256)

to
depth:1

input: (6, 1, 256)

output: (6, 1, 256)
to

depth:1
input: (6, 1, 256)

output: (6, 1, 256)

permute
depth:1

input: (1, 20, 512)

output: (20, 1, 512)

multi_head_attention_forward
depth:2

input: 3 x (20, 1, 512)

output: (20, 1, 512), (1, 20, 20)

permute
depth:1

input: (20, 1, 512)

output: (1, 20, 512)

Linear
depth:2

input: (1, 20, 512)

output: (1, 20, 128)

LayerNorm
depth:2

input: (1, 20, 128)

output: (1, 20, 128)

ReLU
depth:2

input: (1, 20, 128)

output: (1, 20, 128)

Linear
depth:2

input: (1, 20, 128)

output: (1, 20, 1)

sigmoid
depth:1

input: (1, 20, 1)

output: (1, 20, 1)

squeeze
depth:1

input: (1, 20, 1)

output: (1, 20)

output-tensor
depth:0 (1, 20)

Fig. 2. Architecture of the probabilistic
model

Fig. 4. Visualization of test event hits and failed tracking attempt

Fig. 5. Tracking efficiency from particle momentum

Modernization of the model for parallel track construction by a decision
tree

 Let's feed a batch of tracks to the input of our model. The dimensionality (5,20,3) of
the input tensor means that we have 5 tracks of 20 hits with 3 x,y,z coordinates. We will
now return the hidden layers from the probabilistic model to the decision tree. As you can
see, the hidden layers have dimensionality (6,5,256). This means that we have 6 layers for
each of the 5 tracks (3+3 for bidirectional LSTM). Then, if the decision tree does not find
the necessary hit for any of the tracks, it itself forms a new hidden layer tensor where it
updates the layers only for tracks with good hits, otherwise the recurrent network model
would keep in memory the signs of unsuitable hits that spoil further tracking.

Tracker training and testing

 The probabilistic model is trained on ~ tracks processed by the dataset into
good and bad examples. This takes about 2 hours on a custom computer with 4096
computational units. Next, tests of recognizing hit track membership are performed on the
data that did not participate in the training. The accuracy of the trained model is 99.9%.
But this is only the accuracy measured on the dataset data with processed tracks, the next
step is to study the performance of the trained probabilistic model with the decision tree.
The decision tree dataset data used in testing is very dense and contains a large number
of hits and tracks. The proposed modular tracker has low performance on such data. It is
necessary to develop an additional training step already on the decision tree operation,
because the current probabilistic model does not know anything about the track building
algorithm, which gives low efficiency.
 We have the best tracking efficiency of 3.5%, which at least shows that some part of
the tracks (and there are about a million of them in the test) has been built, but there is still
a long way to go for any practical solution. To increase the efficiency, it is proposed to add
a second stage of training, which will be conducted at the level of decision tree operation.

106

Fig. 3. Modification for LSTM part of model

Two-stage training

 Methods have been written to further train the model at decision tree time, but
memory handling still needs to be improved as pytorch sometimes swears on overflow.
Learning in the second stage requires some time, which comes out of the interval of
INTEREST program.

Results

 Various particle tracking neural network models, bmnroot based datasets and
recurrent neural network training were developed. The accuracy on the tracker dataset is
very high but, prior to the introduction of the second stage of training, low efficiency results
were obtained for the current tracker model based on CNN, LSTM and attention layers
when applied with a decision tree on complete experiment events. To improve the
performance, the second stage of training has been added and is now in process.

Conclusion

 The development of neural network models for particle tracking has demonstrated
both successes and problems. Initial training on bmnroot datasets has given suboptimal
performance, prompting the introduction of a secondary training phase, which is currently
underway. While this adjustment is aimed at improving the efficiency of the model, results
are still pending, leaving open the crucial question of whether neural network-based
trackers can rival or outperform Kalman filter methods.

References

[1] Лебедев А. А. Алгоритмы и программное обеспечение для реконструкции треков
в детекторе переходного излучения и в мюонной системе эксперимента СВМ.
ОИЯИ, 2010

[2] Баранов Д. А. и другие. Нейросетевая реконструкция треков частиц для
внутреннего CGEM-детектора эксперимента BESIII. УДК:004.85,004.93,539.1.05

