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Abstract 

 This work concludes to investigate the possibility of efficient particle tracking in the 
BM@N experiment using machine learning techniques. To train and test machine learning 
models, datasets were developed based on modeled data via bmnroot. Various scripts 
were created to work with bmnroot, automating, processing the bmnroot data, extracting 
the parameters required for training and also PostgreSQL database management system 
was used to efficiently store the data, add metadata and extract data using filtering. 
Computational parallelization, data caching technologies were used to be able to generate 
training examples. The possibility of particle tracking was investigated on neural network 
models: RNN, LSTM, GNN, Transformer, hybrid models using several different 
architectures. An attention mechanism was added to the probabilistic model, which is 
applied in large language models (LLMs). A modular architecture has been proposed that 
separates a probabilistic model trained on bmn data and a decision model that builds 
tracks. 

Introduction 

 Track reconstruction in the BM@N experiment is an important part for further 
analysis of the experiment, particle identification. For tracking in the current bmnroot build 
we use the Kalman filter, it is a recursive filter that estimates the state of a linear dynamical 
system using a number of inaccurate measurements made with errors distributed 
according to the normal law, to estimate the belonging of a count to a track we use the chi-
square criterion [1], which is the most popular particle tracking algorithm at the moment. 
Due to the large number of hits, multiple detectors (time layers), this algorithm requires 
long computational time. Machine learning based models have been proposed to speed 
up and improve particle tracking.  
 Neural network models have already been used in particle tracking, the TrackNET 
model was developed [2], using CNN and RNN architectures, the input data is a candidate 
track, at the output the network returns the coordinates of the center and the size of the 
semi-axes of the ellipse, in which 
at the next detector station it will be necessary to search for the continuation of the track (a 
hit belonging to the track), but it was not possible to achieve the accuracy of the Kalman 
filter, the performance of the model was tested only on GEM detectors, which is much less 
detectors and data than in the current BM@N experiment. So the relevance and 
importance of advancing research in this area of particle tracking in the BM@N experiment 
remains. 
 The task of particle tracking can be divided into two parts: finding and fitting. The first 
part is clustering of hits (combining hits into tracks), the second part is extrapolation of 
tracks. 
 The program code is written in Python, and the PyTorch package is used for machine 
learning. 

Project Goals 

• Create a neural network particle tracker for the current state of the BM@N experiment. 
• Improve the speed of particle tracking. 
• Increase tracking efficiency. 

Scope of Work 

 The particle tracker under development will be trained on data from the BM@N 
experiment and is intended for use on this experiment. All results are obtained on bmnroot 
data. 



Methods 

• Development of datasets for training neural network models on bmnroot data. 
• Development of neural network model architectures for particle tracking. 
• Model training and testing using various metrics. 

Developing a tracker architecture for clustering hits 

 kNN (k Nearest Neighbours) and DBSCAN (Density-based spatial clustering of 
applications with noise) are the most popular metric-based clustering algorithms. Unlike 
kNN, DBSCAN can cluster data into different geometric structures, such as tracks, as well 
as filter noise, so the choice is obvious. On the test conducted on bmnroot data DBSCAN 
with conventional spatial clustering did not prove to be an accurate solution for tracking, 
but it is good at grouping hits into pairs or triples, which can be useful for pre-processing 
hits and filtering noise, it can also be parallelized, but it still has a sufficient time 
complexity, especially considering that additional algorithms will need to be applied for 
further track reconstruction, so the use of classical clustering algorithms was decided to be 
discouraged.  
 The multilayer perseptron model alone is of little use in this task, as it has a fixed 
number of inputs. If there are a variable number of tracks in the events, then we will have a 
variable number of hits (even if there were always only a couple of tracks, it is worth 
remembering the noise hits). Let's imagine a linear binary classifier (outputs 1 if a track, 0 
if not a track), which will take as much data as the maximum number of tracks 
encountered in the trials as input (or even more by a factor of several, to be sure), 
excluding that the input limit of this classifier will ever be crossed. But then in most cases 
the input data will be zero, training such a classifier will be ineffective, because most of the 
weights will be undertrained. It is possible to make a classifier with the number of inputs 
equal to the number of detectors and search all hits, but a complete search of hits on each 
detector will take a long time and such a model will be inefficient. 
 We need a model that has a small and fixed number of hidden layers, but can 
accept variable length data or a large amount of data at once that is processed 
sequentially. Such models of neural networks exist, they are recurrent neural networks and 
convolutional neural networks.  
 Работу реккурентной сети можно рассмотреть на схеме (Рис. ?).  
 The idea of the new modular recurrent tracker is to train some probabilistic model 
that will sequentially take hits from detectors as input and output the probability with which 
this hit belongs to the currently collected track. Another module, called decision tree, will 
use the probabilistic model to build tracks. At the beginning of tracking all hits from the first 
detector are sent in parallel to the input of the probabilistic model, so that all possible 
tracks will be built immediately in parallel, then the hits from the next detector are 
searched, the indexes of hits with the highest probability for certain tracks are memorized 
and added to the model, if suddenly no hits with good probability are found, then the 
hidden layers of these tracks are not updated. Selectively updating the hidden layers 
requires the development of separate methods. 
 The move to a modular system was motivated by the problem of the single tracker 
model, which is the complexity of training it. To process tracks from a complete experiment 
event, it is necessary to loop through the hits, while having to reset the last state of the 
hidden layer if the hit is incorrect in order to continue building the track. Such 
manipulations interfere with the computation of gradients. Only by designing an 
architecture with selective update of hidden layers, without reset functions, was it possible 
to train the tracker at the decision tree level. Also, the modularity of the tracker was 



convenient for testing different probability model architectures without the need to copy the 
code. 
 The probabilistic model is trained on data with good and bad tracks to learn to 
identify features that correspond to the tracks. 
 A model based on a three-dimensional CNN was also implemented, covering the 
entire detector region with a mesh, but this method was not completed, since traversing 
the entire mesh at most zero points by the kernel is clearly unnecessary, it is necessary to 
refine the model using sparse matrices. 
 Also the developed model based on graph neural networks was not tested as part 
of the work. 
  

Preparing data for model training and testing 

 The run_sim_bmn.C and run_reco_bmn.C macros of the bmnroot package are 
used to generate the BM@N experiment model data. The macros are run in multiple 
Docker containers for better efficiency, once they are completed, a macro is run to write 
data to a PostgreSQL database. The table is populated with the coordinates of the hits 
from the reconstruction data, a label indicating whether it is test data or training data; the 
momentum of the particle, the track number that corresponds to the Monte Carlo point of 
the particle associated with the reconstruction hit. 

 A dataset is written based on this data to train a recurrent probabilistic model. Using 
one SQL query, we unload from the database all hits with track_id not equal to -1 (non-
noise hits), group them by track_id, sort by z-coordinate of hits, leave the groups with the 
number of hits more than 4, these are the tracks we are interested in the experiment. We 
will use another query to determine the size of the dataset. When there are too many 
tracks in the database for a single upload to memory (or if there is a need to run the 
training on user computers), this module in the code can be modified to upload and 
process the data in parts. Next, using the multiproccesing module, we create streams with 
the formation of good and bad examples. For good tracks, we create a tensor with ones 
labels, align the data by augmenting it with zeros to a uniform length to be able to form 
data packets used in training iterations. For bad tracks, we choose a random number from 
1 to n (some parameter) denoting the number of bad hits in the training track, take the hits 
not belonging to the track but from a common event and insert them into this track in 
random places, keeping an increasing sequence along the z-coordinate.  
 A program handler executing in multithreaded mode writes data to PyTorch files in 
tensor packages when the amount of processed data equals the desired package size, or 

Fig. 1. View of the table with modeling data



when the thread terminates. Then, when the dataset is reused for training, this data can be 
subloaded without having to re-process hits and create examples, or new ones can be 
created if the database has been updated. 
 A dataset has also been developed to test a decision tree that produces hits by 
event and has a method for checking the correctness of tracks. 
  

 CNN + LSTM + Attention probabilistic tracking model 

 The model takes as input a batch of hits of 
the estimated track, the batch is first processed 
by a convolutional layer that detects features 
specific to the detector layer. In model testing, it 
is found that this layer does not improve the 
tracking results compared to the model based 
only on LSTM and attention mechanism, but it is 
suggested to improve the model by explicitly 
storing previous hits and processing the data 
through CNN along the track. CNN performs 
better on local features than the recurrent 
network model. 
 Additional LSTM inputs are hidden layer 
inputs. Separately, layers are stored before data 
is added and after if the hit did not meet 
expectations. To reset the state, the previous 
hidden layer is input. 
 Self-attention mechanism is used (labled 
like MultiheadAttention on scheme). The 
attention mechanism takes 3 tensors. The first 
tensor Q (Query) is responsible for what we 
need to find. Tensor K (Key) what attribute to 
search for. Tensor V (Value) what information to 
provide. The self-explanation is to pass the 
same tensor to the 3 inputs of the mechanism. 
 The output of the model uses a sigmoidal 
activation function to return a value in the range 
[0,1] to match the probability. 

Sequential

LSTM

MultiheadAttention

Sequential

input-tensor
depth:0 (1, 20, 3)

permute
depth:1

input: (1, 20, 3)

output: (1, 3, 20)

Conv1d
depth:2

input: (1, 3, 20)

output: (1, 64, 20)

InstanceNorm1d
depth:2

input: (1, 64, 20)

output: (1, 64, 20)

ReLU
depth:2

input: (1, 64, 20)

output: (1, 64, 20)

permute
depth:1

input: (1, 64, 20)

output: (1, 20, 64)

lstm
depth:2

input: (1, 20, 64), 2 x (6, 1, 256)

output: (1, 20, 512), 2 x (6, 1, 256)

to
depth:1

input: (6, 1, 256)

output: (6, 1, 256)
to

depth:1
input: (6, 1, 256)

output: (6, 1, 256)

permute
depth:1

input: (1, 20, 512)

output: (20, 1, 512)

multi_head_attention_forward
depth:2

input: 3 x (20, 1, 512)

output: (20, 1, 512), (1, 20, 20)

permute
depth:1

input: (20, 1, 512)

output: (1, 20, 512)

Linear
depth:2

input: (1, 20, 512)

output: (1, 20, 128)

LayerNorm
depth:2

input: (1, 20, 128)

output: (1, 20, 128)

ReLU
depth:2

input: (1, 20, 128)

output: (1, 20, 128)

Linear
depth:2

input: (1, 20, 128)

output: (1, 20, 1)

sigmoid
depth:1

input: (1, 20, 1)

output: (1, 20, 1)

squeeze
depth:1

input: (1, 20, 1)

output: (1, 20)

output-tensor
depth:0 (1, 20)

Fig. 2. Architecture of the probabilistic 
model



Fig. 4. Visualization of test event hits and failed tracking attempt

Fig. 5. Tracking efficiency from particle momentum



Modernization of the model for parallel track construction by a decision 
tree 

 Let's feed a batch of tracks to the input of our model. The dimensionality (5,20,3) of 
the input tensor means that we have 5 tracks of 20 hits with 3 x,y,z coordinates. We will 
now return the hidden layers from the probabilistic model to the decision tree. As you can 
see, the hidden layers have dimensionality (6,5,256). This means that we have 6 layers for 
each of the 5 tracks (3+3 for bidirectional LSTM). Then, if the decision tree does not find 
the necessary hit for any of the tracks, it itself forms a new hidden layer tensor where it 
updates the layers only for tracks with good hits, otherwise the recurrent network model 
would keep in memory the signs of unsuitable hits that spoil further tracking. 

Tracker training and testing 

 The probabilistic model is trained on ~  tracks processed by the dataset into 
good and bad examples. This takes about 2 hours on a custom computer with 4096 
computational units. Next, tests of recognizing hit track membership are performed on the 
data that did not participate in the training. The accuracy of the trained model is 99.9%. 
But this is only the accuracy measured on the dataset data with processed tracks, the next 
step is to study the performance of the trained probabilistic model with the decision tree. 
The decision tree dataset data used in testing is very dense and contains a large number 
of hits and tracks. The proposed modular tracker has low performance on such data. It is 
necessary to develop an additional training step already on the decision tree operation, 
because the current probabilistic model does not know anything about the track building 
algorithm, which gives low efficiency. 
 We have the best tracking efficiency of 3.5%, which at least shows that some part of 
the tracks (and there are about a million of them in the test) has been built, but there is still 
a long way to go for any practical solution. To increase the efficiency, it is proposed to add 
a second stage of training, which will be conducted at the level of decision tree operation.  
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Fig. 3. Modification for LSTM part of model



Two-stage training 

 Methods have been written to further train the model at decision tree time, but 
memory handling still needs to be improved as pytorch sometimes swears on overflow. 
Learning in the second stage requires some time, which comes out of the interval of 
INTEREST program. 

Results 

 Various particle tracking neural network models, bmnroot based datasets and 
recurrent neural network training were developed. The accuracy on the tracker dataset is 
very high but, prior to the introduction of the second stage of training, low efficiency results 
were obtained for the current tracker model based on CNN, LSTM and attention layers 
when applied with a decision tree on complete experiment events. To improve the 
performance, the second stage of training has been added and is now in process. 

Conclusion 

 The development of neural network models for particle tracking has demonstrated 
both successes and problems. Initial training on bmnroot datasets has given suboptimal 
performance, prompting the introduction of a secondary training phase, which is currently 
underway. While this adjustment is aimed at improving the efficiency of the model, results 
are still pending, leaving open the crucial question of whether neural network-based 
trackers can rival or outperform Kalman filter methods. 
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