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1 Introduction

Due to Derrick’s theorem in 2-dimensional space, scalar fields for soliton
solutions must always be in a vacuum state. Nevertheless, by choosing certain
boundary conditions of the vacuum, we can obtain topologically nontrivial
soliton solutions. Such solutions take place in various sigma models.[1]

Sigma models are presented, when considering situations, where the sym-
metry of the initial system G is violated to some symmetry H, which acts
trivially on vacuum fields. It is assumed that all vacuum fields can be ob-
tained transitively by the action of the symmetry group of the initial system
on some vacuum ϕ0. Then the manifold M corresponding to the set of vac-
uum values is associated with the group of the initial system as follows[2]:

M = G/H = {gH : g ∈ G}

An example is the violation of the chiral symmetry SU(3) × SU(3) to the
vector SU(3). In this report, a fairly simple sigma O(3) model will be con-
sidered. If the SO(3) group is violated to SO(2), then the vacuum fields take
values on:

S2 = SO(3)/SO(2)

The Lagrangian of the sigma model must be invariant with respect to the
action of the transitive group G, then the main part will have the form :

L =
f

2
gij∂

µθi∂µθ
j (1)

Where f is some constant, θ are coordinates on M , gij = gij(θ)- metric on
M , which is invariant with respect to the action of the group G. In our model
ϕaϕa=1, {a = 1, 2, 3}-field triplet, and our Lagrangian has the form:

L =
1

4
∂µϕa∂µϕ

a (2)

The soliton solution of our model can be constructed in terms of the com-
plex variable W using the north (or south) stereographic projection from the
sphere S2 onto the plane R2.

2 Stereographic projection

The triplet takes values on a S2:

(ϕ1)2 + (ϕ2)2 + (ϕ3)2 = 1 (3)
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Figure 1: Stereographic projection

We’ll try to find a one-to-one map from S2 to R2.
Let’s draw a straight line through point N(0, 0, 1) (North projection)

and any point on the sphere D(ϕ1, ϕ2, ϕ3). This straight line intersects our
plane at some point M(u,w, 0). We can write equation of our line in R3:

x− 0

ϕ1 − 0
=

y − 0

ϕ2 − 0
=

z − 1

ϕ3 − 1

So, now we can put coordinates of M(u,w,0) in our equation:

u

ϕ1
=
w

ϕ2
=

1

1− ϕ3
(4)

Was obtained the following mapping of the points of the sphere onto the
plane:

(u,w) = (
ϕ1

1− ϕ3
,

ϕ2

1− ϕ3
) (5)
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From equations (3) and (4) we can get inverse mapping:

(ϕ1, ϕ2, ϕ3) = (
2u

1 + u2 + w2
,

2w

1 + u2 + w2
,−1− u2 − w2

1 + u2 + w2
) (6)

If we take point S(0, 0,−1) (South projection) instead of N(0, 0, 1), we
will get such mapping (in equations (5) and (6) we just change sign):

(u′, w′) = (
ϕ1

1 + ϕ3
,

ϕ2

1 + ϕ3
) (7)

And inverse:

(ϕ1, ϕ2, ϕ3) = (
2u′

1 + u′2 + w′2 ,
2w′

1 + u′2 + w′2 ,
1− u′2 − w′2

1 + u′2 + w′2 ) (8)

Let’s see how our metric is transformed using this mapping. In R3,the
interval ds2 = dϕadϕa = gabdϕ

adϕb = (dϕ1)2 + (dϕ2)2 + (dϕ3)2, where gab =
diag(1, 1, 1), a, b = 1..3. Then we use the equation (6) (or (8), as you can
see (dϕ3)2 doesn’t depend on the choice of projection, so our Lagrangian is
independent too) and after simple transformations we get:

dϕadϕa =
4

(1 + u2 + w2)2
(du2 + dw2)

Such form of metric g = g(u,w) is called conformal, and coordinates u,w
in which metric has a conformal form called conformal coordinates [3]. And
now we can rewrite Lagrangian (2):

L =
1

(1 + u2 + w2)2
((∂au)2 + (∂aw)2) (9)

We can use such a variable substitution:{
W = u+ iw

W = u− iw
=⇒

{
u = 1

2
(W +W)

w = i
2
(W −W)

(10)

So, Lagrangian will have the form:

L =
∂aW∂aW

(1 +WW)2
(11)

If new derivatives are introduced ∂z and ∂z, we’ll get:{
∂z =

1
2
(∂x1 − i∂x2)

∂z =
1
2
(∂x1 + i∂x2)

=⇒ L =
|∂zW |2 + |∂zW|2

(1 +WW)2
(12)
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From (6) (North projection) and (10) we can write ϕa = ϕa(W,W) and
W = W (ϕa), a = 1..3:

ϕ1 = W+W
1+|W |2

ϕ2 = −i W−W
1+|W |2

ϕ3 = −1−|W |2
1+|W |2

=⇒ WN =
ϕ1 + iϕ2

1− ϕ3
(13)

From (8) (South projection) and (10):
ϕ1 = W+W

1+|W |2

ϕ2 = −i W−W
1+|W |2

ϕ3 = 1−|W |2
1+|W |2

=⇒ W S =
ϕ1 + iϕ2

1 + ϕ3
(14)

3 Energy density

Let’s find stress-energy tensor and energy density of Lagrangian (1):

T µν =
∂L

∂∂µϕa
∂νϕa − ηµνL

E = T 00 =
∂L
∂∂0ϕa

∂0ϕa − η00L = L+ 2(∂0ϕ
a)2 (15)

In stationary model energy density is equal to Lagrangian and after coordi-
nate transformation have the from (12)

4 Two soliton solution

Now, can be presentated simple soliton solution (in this report, the North
projection will be used). We construct the soliton solution of the O(3) sigma
model via holomorphic map:

W =
P (z)

Q(z)
, (16)

where P(z),Q(z)- polynomials of degree at most N of the complex coordinate
z = x1 + ix2/par

To get two soliton solution we will use such W=W(z):

W =
(z − a)(z − b)

(z − c)(z − d)
, (17)

where a,b,c,d- some complex numbers.
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(a) Energy density distribution for
a = −0.08− i, b = 0.24 + i,
c = 0.8 + 0.27i, d = 1− 0.28i

(b) Energy density distribution for
a = −0.006− i, b = 1 + 0.5i,

c = 2− 0.27i, d = 1− 0.28i

(c) Energy density distribution for
a = −1− 1i, b = 1 + 0.5i,

c = 0.002− 0.27i, d = 0.006− 0.28i

(d) Energy density distribution for
a = −2− 6i, b = 0 + 6i,

c = −5i, d = 5i

(e) Energy density distribution for
a = −0− 6i, b = 0 + 6i,

c = −5, d = 5

Figure 2: Energy distribution for different values of a,b,c,d
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5 Eight solitons solution

Using equations (13) and (14), we can find how WN and W S corresponds
to each other:

W S =
ϕ1 + iϕ2

1 + ϕ3
=
WN +WN −WN +WN

WNWN
=

2

WN
(18)

The constant multiplier can be neglect.
We can introduce a potential, that produces 8 solitons in a row in the

North and South projections. If in the North, the potential has the form:

WN =
α

1
z−x1

+ 1
z−x2

+ 1
z−x3

+ 1
z−x4

+ 1
z−x5

+ 1
z−x6

+ 1
z−x7

+ 1
z−x8

(19)

Then in the South:

W S =
1

α
(

1

z− x1
+

1

z− x2
+

1

z− x3
+

1

z− x4
+

1

z− x5
+

1

z− x6
+

1

z− x7
+

1

z− x8
)

Where α is scale coefficient, for constructing solitons was used α = 10, xi-
position of solitons on the x-axis, i=1..8.

Figure 3: Eight solitons solution for
x1 = −3.5, x2 = −2.5, x3 = −1.5, x4 = −0.5, x5 = 0.5, x6 = 1.5,

x7 = 2.5, x8 = 3.5
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6 Eight solitons solution in a triangle

As was introduced in previous section W = W (z), which creates eight
solitons solution in raw, now can be introduced a holomorphic map that
presents eight solitons solution in a triangle:

WN =
4

1
z
+ 1

z+ 1
2
−i

+ 1
z− 1

2
−i

+ 1
z−1

+ 1
z+1

+ 1
z+ 3

2
+i

+ 1
z− 3

2
+i

+ 1
z−2i

(20)

W S =
1

4
(
1

z
+

1

z + 1
2
+ i

+
1

z− 1
2
+ i

+
1

z− 1
+

1

z + 1
+

1

z + 3
2
− i

+
1

z− 3
2
− i

+
1

z + 2i
)

Figure 4: Eight solitons solution in a triangle

Using inverse mapping (13), can be found ϕ1, ϕ2, ϕ3:
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(a) ϕ1 potential (b) ϕ1 potential

(c) ϕ2 potential (d) ϕ2 potential

(e) ϕ3 potential (f) ϕ3 potential

Figure 5: Potentials ϕ1, ϕ2, ϕ3
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7 Q-Lumps in the O(3) Sigma Model

In this section will be discused non-linear O(3) Sigma Model with sich
Lagrangian:

L =
1

2
∂µϕ

i∂µϕi − V (ϕi), (21)

where i = 1, 2, 3; ϕiϕi = 1 and V (ϕi) is a potential of the scalar field.
Derrick’s theorem excludes existence of a localized static soliton solution

for such system, but this can be circumvented by intoducing isorotations of
soliton configuration[4].

Introduce potential V (ϕ3) = µ2

4
(1 − (ϕ3)4). The minimum value corre-

sponding to this potential is achieved for ϕ3 = 1, ϕ1 = ϕ2 = 0. So our O(3)
symmetry system brokes to O(2) around our vacuum value field. So, our
system is invariant with respect to the isorotations:

ϕ1 7−→ ϕ1 cos(ωt) + ϕ2 sin(ωt),

ϕ2 7−→ −ϕ2 cos(ωt) + ϕ1 sin(ωt),

Corresponding Noether current:

jmu = εab∂muϕ
aϕb

Then the conserved charge of our configuration:

QSO(2) =

∫
j0 dx

2 = ω

∫
(ϕ2)2 + (ϕ1)2 dx2 (22)

As was admitted previously, because of |ϕ|2 = 1 soliton solutions will be
topologycally-nontrivial. Our scalar fields lives on S2

ϕ, and all fields approach
on vacuum field at infinity, so all the points on boundary are identical and
as a result the coordinate plane R2 7→ S2. So the field becomes a map
ϕ : S2 7→ S2. As a result, we have topological charge Q, the number of times
the sphere S2 wrapped around the sphere S2

ϕ.

Q =
1

8π

∫
εabcεijϕ

a∂iϕ
b∂jϕ

c.

Configuration which carries topological and Noether charge was called
Q-lumps. Our energy functional has the form:

E[ϕ] =

∫
1

2
∂jϕ

i∂jϕi + V (|ϕ|) + ω2

2
((ϕ2)2 + (ϕ1)2) dxd,
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E[ϕ] = ET + EV +
Q2

SO(2)

2Λ
,

where Λ =
∫
(ϕ2)2 + (ϕ1)2) dxd- the moment of inertia.

After scaling transformation x 7→ λx and finding of the stationary point
of the energy E at λ = 1, we will get:

(2− d)ET + d(
Q2

SO(2)

2Λ
− EV ) = 0

In our model d = 2, so

EV =
Q2

SO(2)

2Λ
(23)

Stable configurations will exist only for some values of ω. From (23) we
can find boundaries of changing for ω[6],[4]:

1√
2
≤ ω ≤ m (24)

Now we can consider two variational problems for finding corresponding
field equations:

EQSO(2)
[ϕ] = ET + EV +

Q2
SO(2)

2Λ
,

Fω[ϕ] = ET + EV − Λω2

2
,

(25)

the energy functional extremized with fixed QSO(2), the pseudoenergy func-
tional extremized with fixed ω. There is some difficulties related with solving
differential-integral equation for the first functional, because Λ is in the de-
nominator [4]. Therefore, it is preferable to solve the equations obtained
from the second functional.

The isorotations of the configurarion (25) don’t violate the symmetry of
the system, so we can use hedgehog ansatz:

ϕ1 = cosψ sin f(r),
ϕ2 = sinψ sin f(r),
ϕ3 = cos f(r),

(26)

where f(r) some radial function, with boudary conditions: f(0) = π, f(inf) =
0. After substitution of this parameterization and solving the variatonal
problem for pseudoenergy (25), we will get following equation:

f ′′ +
1

r
f ′ + (ω2 − 1

r2
) sin f cos f −m2 cos3 f sin f = 0. (27)
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And corresponding charges:

QSO(2) = 2πω
∫∞
0
r sin2 f dr,

Q = −1
2

∫∞
0
f ′ sin f dr = 1

2
(1− cos f(0)) = 1,

Equation (27) was solved numerically using the software package CES-
DSOL, using the Newton-Raphson algorithm with compactification. The
solution of the Baby Skyrmion configuration was used as an initial approxi-
mation. In equation (27) was chosen m = 1.

(a) Function f(r) with different ω

(b) Potential ϕ3 with different ω

Figure 6: Solutions of the equation (27)
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Figure 7: QSO(2) and E as a functions of w

Figure 8: E as a function of QSO(2)

From Figure 6a we see how function f(r) changing with changing of ω.
When ω < 0.8 function has three regions, f(r) 7→ π

2
, f(r) = π

2
and f(r) 7→ 0

(thick-wall limit). When ω increases, value of function f(r) rapidly falls to
zero (thin-wall limit). As we can see from Figure 7, when ω 7→ m, then
QSO(2) 7→ 0, and as ω 7→ 1√

2
– QSO(2) 7→ ∞. And, as expected, there is a

linear dependence of energy on charge, as shown in Figure 8.

8 Conclusion

In this report were analyzed different soliton solutions, in O(3) sigma
model without potential and non-linear O(3) sigma model, Q-Lumps. As
was demonstrated, due to topological nontrivial structure of space on which
live fileds, we can easily find soliton solution by projection of S2 7→ CP1. It
will also be interesting to consider O(4) sigma model with 6-potential and
interaction of two such configurations, or spin-orbit interaction of Q-lumps
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in future reports.
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