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1. Abstract

In the experiments dealing with synthesis of superheavy nuclei, scientists primarily use radiochemistry and
decay chain analysis to identify basic nuclides. However, due to the short half-lives of most superheavy nuclei
(ranging from 100 microseconds to 10 milliseconds), kinematic separators are commonly employed to
separate these nuclei with high reliability and efficiency. These separators do not provide information on the
masses of the nuclei, though. To overcome this limitation, the MASHA mass-spectrometer was developed at
the FLNR JINR in Dubna, Russia [1]. It combines the ISOL method for creating and separating radioactive
nuclei with traditional mass analysis techniques to enable the identification of the masses of newly synthesized
nuclides across a broad mass range. This allows scientists to investigate the a-decays or spontaneous fission
of these superheavy nuclei.

2. Introduction

The growth in the synthesis of the new nuclides have prompted for the development for the new methods for

identifying synthesized nuclides have been developed using classical mass spectrometric techniques.

However, unlike classical mass spectrometry, the masses of newly synthesized nuclides must be measured

online, i.e., directly during their synthesis on accelerated heavy ion beams. The Isotope Separation On-Line

(ISOL) method is a highly effective way to separate reaction products, specifically super heavy isotopes, so

that they can be studied, and their masses determined. The ISOL system involves multiple steps, including

production, thermalization, ionization, extraction, mass separation, cooling, charge-state breeding, and
acceleration. However, for this method to be successful, several factors must be taken into consideration.

e Firstly, it is essential to ensure that the efficiency of separation is high. The production rate of very exotic
nuclei is usually marginal, so any manipulation of the reaction products, such as ionization, purification,
acceleration, and transport to the detection system, must be done with great efficiency to avoid losing these
"precious™ nuclei.

e Secondly, the selectivity of the separation process is crucial. In nuclear reactions, unwanted, more stable
nuclei are typically produced more abundantly. Additionally, ISOL systems often generate beams of
isotopes from the target material itself or from other components of the target-ion source system.
Therefore, the separation process should effectively distinguish between the desired and undesired species.

e To minimize losses caused by radioactive decay between production and arrival at the experimental set-
up, the time of separation must be kept short when dealing with short-lived exotic nuclei. Additionally,
careful consideration must be given to the choice of catcher material in ISOL, which can include solid,
liquid, or gas catchers, with each type having specific applications. For our particular application involving
carbon nanomaterial, a solid catcher proved to be the most efficient and speedy option. This approach was

created by FLNR, JINR. This mass analyzer possesses unique capabilities, including the ability to measure

the masses of synthesized superheavy element isotopes and simultaneously detect their o decays and/or
spontaneous fission.

3. MASHA Arrangement and Essential Setup

The MASHA setup consists of following setup:

1. Target box:

After the recoil nuclei exit the target, they are implanted into a heated catcher maintained at a temperature
range of approximately 1800-2000K. The target itself is a rotating wheel consisting of six cassettes with two
sectors each, providing better efficiency and heat distribution compared to a stationary target. The thickness
of the target is determined by the range of the recoil nuclei in the working layer, which depends on the kinetic
energy of the heavy atom produced from the fusion reaction.

a 75% porosity and a density of 1 g/cm3, and shaped as a 30 mm diameter disk with a thickness of 0.6 mm.
The hot catcher operates at a delivery time of 1.8+0.3 s to transport nuclides to the ion source (ECR), with the
separation time determined using the beam interruption method.
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2. lon source:

The setup uses an ECR ion source with a 2.45 GHz frequency to ionize atoms of nuclear reaction products.
The source achieves almost 100% singly ionized atoms, and the ionization efficiency of noble gases is as high
as 90%. A hot catcher is used to inject products of complete fusion reactions into the ECR source. The primary
beam of heavy ions passes through a diagnostic system composed of a split-type aperture of the electrostatic
induction sensor to control the beam position relative to the ion guide. Nuclear reaction products escape from
the target, pass through the separating foil, and are stopped in the graphite absorber, which is heated to a
temperature of 1500-2000 K. The products diffuse from the graphite absorber to the vacuum volume of the
hot catcher and reach the ECR source.

3. Detection and Control System:
A special strip detector and well-type silicon detector are used to measure low direct currents and detect decays
of nuclear reaction products, respectively, in the mass spectrometer. The strip detector is an exact copy of the
frontal part of the silicon detector and has 192 strips with a pitch of 1.25 mm. A multichannel electronic
module is developed for the strip detector to measure low currents. The well-type of silicon detector is installed
in the focal plane of the mass spectrometer and covers a 240 x 35 mm area with 192 strips.
Four side detectors are also installed to increase the detection efficiency. Both detectors have a dead layer
thickness of less than 50 nm, and the signals from each strip are read out independently using preamplifiers
and shaping amplifiers. Two separate data acquisition programs are used for each detector.

4. The mass separator and DAQ in focal plane:
In this setup, a magnetic-optical analyser functions as the mass separator , wherein the ions are separated based
on their magnetic rigidity in a constant magnetic field. The mass determination of super heavy atoms is
achieved with a high degree of accuracy, with a precision of Am=0.25-0.30 e.m.u. Detectors are positioned
in the focal plane of the magnetic analyzer to detect the position and decay of the separated atoms. The use of
well-type position sensitive strip detectors, comprising focal, side, and lateral crystals, enables the registration
and determination of the masses and decay energies of both evaporation residues and their daughter decay
products, with a greater geometric efficiency. However, to ensure accurate registration of the atoms, it is
crucial to eliminate any alpha-particle background resulting from the decay of target-like nuclei, particularly
those produced in deep-inelastic collisions or quasi-fission, such as the light isotopes of actinide elements (Th
and U), which are around 40-60 e.m.u. away from the mass of the superheavy atom. These nuclei can be

effectively separated at the intermediate focal plane.[4]
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e Improvements in MASHA setup [3]:

The main units of the mass-spectrometer MASHA were modernized, including the hot catcher, ECR ion
source, vacuum chambers, hot transport system, and an additional strip detector for separation efficiency
control. The hot catcher design now includes a poly-graphene heater and thin graphene foil or carbon nanotube
paper catcher to prevent heating and radiation destruction. The ECR ion source has a ceramic coating, allowing
for operation at high temperatures, and glass-enamel coating for detecting non-volatile elements close to
volatile ones.

The walls of the source chamber, catcher, and transportation line are covered with titanium nitride to increase
ionization efficiency and outgoing time. The optimization of the ECR ion source parameters, such as power,
frequency of the microwave generator, and pressure of the buffer gas, is crucial for effective use of the ion
source.

To improve the stability of the separation efficiency of the MASHA setup during experiments with high beam
intensity, an additional graphene foil of 0.6 mg/cm2 thickness was added 2.5 mm ahead of the main heater at
the beam axis. The graphene foil heats up from the main heater through radiation and takes some heating load
caused by the beam. It also serves as a separator for low-energy reaction products that stop inside the thin foil,
while the beam passes through it and gives almost its entire energy to the graphite heater. This improvement
prevents the high beam intensity from corrupting the "Hot Catcher” and decreasing its separation efficiency

by more than five times in just a few days.

Development, realizing and testing of a new controlling system for upgraded MASHA setup based on modular
WAGO-1/0-SYSTEM was done. The ion source, hot catcher and target box was replaced with new ones based
on modular WAGO-1/0-SYSTEM and integrated with mass-separator into the one common controlling
system. The new software, written in LabVIEW, was developed and tested for the controlling system.

4. 1SOL Method

The Isotope Separation OnLine (ISOL) method is used for determining short-lived isotopes by cooling and
stopping reaction products and analyzing them magneto-optically and electrostatically. The ISOL method is
applied in mass analysis and enables separation from the primary beam in an online mode. An experiment was
conducted on the U-400M heavy ion beam at MASHA facility, FLNR, JINR to study the application of new
carbon nanomaterials and determine their radiation resistance for the ISOL method. Previous research with
thermally expanded graphite heat catcher showed incompatibility with high-intensity beams, but



improvements were made to enable synthesizing new products at beam intensities of up to 0.5 ppA and higher
for the SHE factory perspective.

5. RESULTS:

Given: Experimental Data of 3 reactions
G0pr 4 MBg, 188—ang + XN
40Ar + 166Er — 206-Xan+XH
480, 4+ 262p, _—,  2xRq

Task : To analyse the data and plot the histogram using Origin Pro software and perform the peak analysis
and understand the alpha decay energy of the reactions and draw their contour heat maps.

1. Histograms of Hg
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Note: Half-life and a-Decay energy level obtained from Nuclides Chart
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iv. Hg®:
Vodel Gaussian Count
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vi. Hg'®:
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2. Histograms of Rn

201 - 205

I. Rn201:
Model Gaussian — Count 201:
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205.
Rn“™:
Model Gaussian
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3. Histograms of Rn

212-218-219
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Model Gaussian
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6. Conclusion

The study of superheavy elements can provide valuable insights into nuclear reactions and the potential
existence of the "island of stability." The ISOL method, coupled with post-acceleration, enables researchers
to transport and analyse these nuclei under controlled conditions. The MASHA setup is continually improving
to enhance separation efficiency and collect more data on these atoms. Recent experiments have demonstrated
the effectiveness of using new nanomaterials, such as graphene foil and carbon nanotube paper sheets, which
have shown promising results in improving separation efficiency and reducing separation time, thereby
providing exciting opportunities for the analysis of short-lived isotopes.

The MASHA setup, which is constantly being enhanced, includes several key components. Mercury isotopes
created through a complete fusion reaction involving 40Ar and 148Sm, while Rn isotopes produced through
a fusion reaction involving 40Ar and 166Er, as well as a fusion evaporation reaction of 48Ca and 242Pu, were
analysed. Experimental measurements of the alpha decay energies of the isotopes and their daughter nuclei
closely match the theoretically predicted values, with small variations.
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