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Abstract

The project ”Introduction to Quantum Computing” covered key
concepts in the physics of quantum computations. Basic principles
of quantum mechanics were discussed - spin properties and two-level
systems, superposition, entanglement and interference phenomena. In
this work, a brief summary of the theory is given. The graphical
representation of the qubit states (Bloch sphere) is discussed as well
as some of the Quantum Logic Gates. A brief introduction to the
theory behind the superconducting phenomena, the Josephson effect
and Transmon qubits are covered. Finally, the results from the qubit
experiments using the IBM Quantum Lab are presented.
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1 Introduction

Quantum computing is a tool that helps us satisfy the need of greater
efficiency of computing power. This area of research studies how to incor-
porate the strange phenomena of physics from the twentieth century into
computer science. The three key ideas of quantum mechanics — entangle-
ment, superposition, and measurement, provide a new computational model
for information processing.

A classical computer operates on strings of zeros and ones. Each position
in such a string is called a bit and it is the basic unit of data. Each physical
state is associated with a value of either zero or one.

Analogously, the basic unit of data for quantum computations is the
quantum bit (qubit). A qubit can assume the logical values ”0” or ”1” similar
to classical bits. However, it can also be in a logical state that contains any
linear combination of them as shall be discussed in the next sections. Qubits
can be entangled, in a superposition state or even interfere with each other,
making them much more powerful than classical bits.

2 Spin Quantum Mechanics

2.1 Stern-Gerlach Experiment
The spin property of the electron was revealed in 1922 in the Stern-Gerlach

experiment (Figure 1).
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A beam of hot silver atoms was shot through a pair of slits and an in-
homogeneous magnetic field. Due to the neutrality of the silver atom no
interaction with the magnetic field was expected, but the particles landed
on the photographic plate creating a pattern of two lines. The division of
the beam into two suggested that a quantum intrinsic angular momentum
property of the electrons, known as spin, interacted with the magnetic field.

It turns out that the spin has a fundamental physical meaning. Depending
on the spin, the particles fall into the two categories — fermions and bosons
as shown below. While the fermions represent the building blocks of matter,
bosons are the quanta of the fields that carry out the interactions — they acts
as "glue” between the fundamental “blocks”.

Every elementary particle has a specific and immutable value of the spin:

e Fermions:

e Bosons:
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Figure 2: Spin Angular Momentum. The direction of intrinsic spin is quantized. For

electrons: S, = my %, (ms = :I:%) where S, is the z-component of spin angular momentum
and m is the spin projection quantum number. The spin projection is reffered to as spin

up (ms = +%) and spin down (mg = _%)



By far, the most important case is s = %, for this is the spin of the particles
that make up ordinary matter, as well as all quarks and all leptons.There
are two eigenstates, which we call spin up and spin down (Figure 2). Those
systems with only two possible states are known as two-level (two-state)
quantum systems. 3]

The qubit model is considered to be a two-level system like the spin and
we can think that their properties are analogous.

2.2 Bloch Sphere
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Figure 3: Bloch Sphere. Geometrical representation of the pure state of a two-level
system. The north and the south poles are corresponding to the |0) and |1) basis vectors
(spin-up and spin-down states). Any pure state 1) of a two-level system can be expressed
as a superposition of the basis vectors |0) and |1). The parameters 6 and ¢ specify a point
in the sphere that corresponds to a given pure state of the system 1 [7].

The eigenstates of a qubit are represented by |0) and |1) which are defined
by the following two vectors:

As we have mentioned, the state of a qubit [¢)) can also be represented
by a linear combination of the two:

[¥) = a|0) + Be?' [1); @, BER, o’ + 7 =1

After parametrization by the angles ¢ and ¢ the state is as follows:
0 0
) = cos |0) + smée‘“ 1)
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The Bloch Sphere is a graphical way to represent these two-level systems. It
is a unit radius sphere and it allows a geometric visualization of the quantum
state of the qubit as a point on its surface (Figure 3).

3 Superconducting qubits

3.1 Josephson Effect

Circuit quantum electrodynamics devices (QED) make use of the quantum
dynamics of electromagnetic fields in superconducting circuits to process
quantum information. These devices are usually formed by embedding a
superconducting device, known as Josephson junction, into another system
made of superconductors.

Superconductivity plays a very important role in the operation of all
circuit QED systems. In superconductors the charge carriers are coupled
electrons that form Cooper pairs. Each electron in a Cooper pair has equal
and opposite spin and momentum.

The Josephson junction is a device in which two superconducting elec-
trodes are separated by a thin insulator (Figure /). It can be viewed as be-
ing synonymous to a nonlinear inductor. The phenomenon where an electric
current is allowed to pass between the superconductors due to the coherent
tunneling of Cooper pairs, is known as the Josephson effect.
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Figure 4: Schematic Diagram of a Josephson Junction [2]. Two superconducting elec-

>

trodes (S) separated by a thin layer of insulator (I). ¢4 and v p are macroscopic wave
functions of Cooper pairs in the electrodes. A current flows through the junction as the

Cooper pairs are able to tunnel through the thin insulator.
The order parameter at each electrode can be written as:

Uy =|Uale®r; Up=|Uple?? (1)

Where ¢ 4(p) are the macroscopic wave functions of Cooper pairs in the
first and second electrodes.



The supercurrent Ig, flowing through the junction is related to the phase
difference between the electrodes ¢ and the critical current I as follows:

Is = Ipsin(o(t)), ¢ = da—¢B (2)

The critical current, I = 2eFE;/h, is the maximum current that the
junction can carry without any dissipation and depends on the properties of
the superconductors and F; is the Josephson energy, which measures the
energy of a Cooper pair tunneling through the junction.

Equation (2) is the first Josephson relation (current-phase relation).
The second Josephson relation also known as the superconducting phase
evolution equation is given by:

do 26V (t)
- 3)
ot h
The Hamiltonian for the Josephson junction can be written as the sum
of the inductive and capacitive energy:

H = H¢ + Hy, = 4Ecn® — Ejcosé (4)

3.2 Cooper pair box

The Cooper pair box (CPB) was one of the first qubits used to observe
macroscopic quantum behaviour in circuit QED systems. The CPB consists
of a Josephson junction that connects a superconducting island and reservoir
(Figure 5a). The Hamiltonian is similar to Eq.(4), n, - offset charge induced
by the voltage source:

H = 4Ec(n —n,)? — Ejcos, (5)

In Figure 5b the diagram for the first three energy levels of a CPB as a
function of n, is shown. The frequencies of microwave radiation that can be
emitted (or absorbed) is based on the energy difference between two adja-
cent energy levels. We observe that half-integer values for n, are ideal for
performing operations, because of the large gap between the first two excited
states, and the energy levels are not evenly spaced. As a result of these
properties, using fast microwave pulses, a transition between the ground and
first excited state can be driven without the need of significant filtering of
the pulse.
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Figure 5: (a) Cooper Pair Box [6]. A superconducting island connected by a Josephson
junction to a superconducting reservoir and capacitively coupled to a gate electrode. (b)
First three energy levels for a qubit with a ratio of the Josephson energy E; to the
Charging energy FE¢ equal to one Ej/E- = 1. The graphic is a function of the gate
charge ny = C,.V,/2e. Half-integer values for the gate charge ny are the regions with the
largest gap between the first two excited states, thus making them ideal for performing
operations.

3.3 Transmon Qubits

The schematic of a transmon qubit is shown in Figure 6c. It is similar
to the ordinary CPB and consists of two superconducting islands coupled
through two Josephson junctions, but isolated from the rest of the circuit.
The Hamiltonian is similar to the CPB system (Eq. 5), but due to the
additional capacitance, the charging energy Eo can be made smaller than
the Josephson energy E;. As a result, the energy ratio E;/FE¢ transitions
from E;/Ec < 1 for CPB to E;/Ec >> 1 for a transmon.
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Figure 6: Schematics of (a) CPB, (b) split CPB, (c) transmon. The transmon consists
of two superconducting islands coupled through Josephson junction and isolated from
the rest of the circuit. The additional capacitance allows smaller values for the charging
energy E¢ and a transition to the energy ratio to Ej/Ec >> 1, decreasing the charging
dispersion.

In Figure 7b are shown the first three energy levels for different energy
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Figure 7: (a) Transmon energy levels (yellow) compared to QHO energies (blue). We
can see that the transmon energy levels are anharmonic (not evenly spaced) which is why
we can use it as a qubit opposing to the QHO. (b) First trhee energy levels for different
Ej/Ec ratios [4]. A more stable qubit transition frequency with respect to noise is being
observed with the increase of the ratio.

ratios. By increasing E;/Fc an exponential decrease of the charging dis-
persion is observed and therefore a stable qubit transition frequency with
respect to charge noise.

4 Quantum Gates

Claude Shannon showed that all boolean algebra could be performed using
electrical switches. The combination of switches that correspond to the bi-
nary operators are called gates. A hardware quantum computer implements
a core set of core gates and more advanced ones that are built from them
using circuits. A quantum circuit is a sequence of gates that are applied
to one or more qubits in a quantum register [1].

Figure 8 shows some of the quantum logic gates and their matrix repre-
sentation:

e The Pauli-X Gate: The X Gate is equivalent of the NOT gate for
classical computers and applying it means a rotation of the state of the
qubit of 180 degrees. By looking at Fig. 3, we can observe that it can
be visualized as a rotation around the X-axis;

e The Pauli-Y Gate: It is analogous to a rotation around the Y-axis
of the Bloch sphere by 7 radians;
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Figure 8: Quantum Logic Gates and their matrix representation

The Pauli-Z Gate: It equates to a rotation around the Z-axis of the
Bloch sphere by 7 radians;

The Phase Gate: The P gate performs a rotation of ¢ around the
Z-axis direction, where ¢ is a real number. The Z-gate is a special case
of the P-gate where ¢ = m;

Hadamard Gate: The H-gate is a fundamental quantum gate. Ap-
plying it to a qubit brings the qubit to a superposition state;

CNOT Gate: The Controlled-Not gate is analogous to the XOR gate
in classical computing. It has two inputs and two outputs - it takes
two qubits and thus it will be a 4x4 matrix. It leaves the control qubit
unchanged and performs a Pauli-X gate on the target qubit when the
control qubit is in state |1) or leaves the target unchanged in case the
control qubit is in state |0);

SWAP Gate: It is a two-qubit operation that when applied swaps
their state;

Toffoli Gate: Also known as the Controlled-Controlled NOT gate, it
is a three qubit operation defined by the given in Figure 9 matrix:
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5 Qubit Measurements

5.1 Qubit Frequency Scan

Using the IBM Quantum Lab in this exercise we are going to find the
resonant frequency f, of the qubit. This frequency is the difference in energy
between the ground |0) and excited states |1).

EOI = h’fOl

It can be found by sweeping a frequency span (around 40MHz) and using a
Network Analyzer with step of 1IMHz in order to find signs of absorption. At
each frequency a drive pulse, Gaussian pulse in our case, of that frequency
will be sent to the qubit.

We fit the function to the data:

A B

T T e+ P +C (6)

The peak in the center corresponds to the location of the qubit frequency
(Figure 9):

for = 4.97167 GH= (7)
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Figure 9: Qubit Frequency Scan. At each frequency from the chosen span a Gaussian
drive pulse is being sent to the qubit. The resonant frequency of the qubit fy; = % =

4.97167GH z is found at the peak in the center after fitting (6) to the data.
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5.2 Rabi Oscillations. 7 pulse

The oscillations we see in Figure 10 are called Rabi Oscillations and are
a basic process used to manipulate qubits. They are obtained by exposing
qubits to periodic electric or magnetic fields during adjusted time intervals.
If at time t=0 the qubit is in state |0), at time ¢ it will have a probability
Po—1(t) of being found in the state |1) [5]. At resonance, the oscillation
between the states has maximum amplitude, where the frequency w; is the
Rabi frequency.:

Po1(t) = Smg%t; %t = g t= ;Tl

The 7 pulse determines the transition between the two states of the qubit,
|0) and |1) respectively. This is analogous to applying the X-gate and the
rotation of the state on the Bloch sphere by 7 radians (Figure 10). We
already know the microwave frequency needed to drive the transition from
the previous experiment. To define the amplitude needed, we start with small
pulses and increase their amplitudes progressively by measuring the state of
the qubit at each step. The results were then fit into a curve given by the
equation:

Acos(zTTz - ¢)+ B (8)

The 7 pulse amplitude is 0.15422

=10y | |
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Figure 10: (a) Rabi Oscillations. At each step the state of the qubit is measured for

us

different drive amplitudes. The results were fit (red) by Eq. (8). The 7 pulse t = o

determines the transition between states |0) and |1}). (b) Rotation on the Bloch sphere
by 7 radians around the X-axis (appliyng X-gate) is analogous to applying the = pulse.
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5.3 0/1 Discriminator

Our task is to create a state |1) after applying our calibrated 7 pulse to a
qubit in superposition and building a discriminator - a function that takes a
measured and kerneled complex value and classifies it as either 70” or ”1”.
By repeatedly doing the experiment and plotting the measured signal we
obtain two clusters (Figure 11). They vizualize the results from the ground
state in blue and the results from the excited state in red.

0-1 discrimination

25 50 75 100 125 150

Qla.u]

Figure 11: 0/1 Discrimination in the IQ plane. The two clusters represent the two states
”(0” and ”1” in blue and red respectively.

5.4 Relaxation time 7T}

The relaxation time 7) is the time it takes for a qubit to decay from
excited to ground state. The experiment uses the 7 pulse and then we apply
a measure pulse after a delay varying between the experiment. The result is
a signal that delays exponentially (Figure 13a).

5.5 Ramsay Experiment. Precise Qubit Frequency

For a better precision we are using a Ramsey pulse sequence to determine
the qubit frequency. An oscillation at the difference in frequency between
the applied pulses and the qubit should be observed as we are measuring the
signal at the same frequency for both. We will drive the pulses off-resonance
by a known amount and the signal oscillations should be with a small offset
frequency. The data is then fitted to a sinusoid and we extract the offset
frequency Af = 2.02M Hz (Figure 12). The precise qubit frequency is as
follows:

F = Frougn + Af = 4.97T166G H = (9)

13
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Figure 12: Ramsay Experiment. Ramsay pulse sequence is applied to the qubit: first 7/2
pulse and after a time delay At a second /2 pulse. The pulses are driven off-resonance by
a fdetuning = 2M Hz. The Ramsey frequency is then the sum of the rough qubit frequency
and the detuning frequency. The data is fit to the function Acos(2rAfx — C) + B. The
offset is Af = 2.02MHz

5.6 Hahn Echo Experiment. Measuring time 7,

The Hahn echo is a pulse sequence similar to the Ramsay experiment, with
a 7 pulse between the two m/2 pulses (Figure 13b). The additional pulse
applied at time 7 reverses the accumulation of phase and an echo at time 27
is created. The decay time for the experiment gives us the coherence time T,

Ty, = 311.33us (10)
T Experiment Hahn Echo Experiment
— T1=17058us 05{— T=31133us .
S
. 55 04
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= c
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Figure 13: (a) Relaxation Time Experiment. The plot shows the measured signal as
a function of the delay time. An exponential decay is being observed as the qubit relaxes in
energy. The data is fit to a decaying exponential, giving us the time T} from the equation
AeT YO Ty = 170.58us. (b) Hahn Echo Experiment for measuring the coherence time
T5 of the qubit. A pulse sequence is being applied as foolows: 7/2, w(at time 7),7/2. The
measured signal is shown as a function of the delay. The decay time T5 is obtained after

fitting the data to AeT> B
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5.7 Dynamical Decoupling

Dynamical decoupling allows the cancellation of different frequencies of noise
and is used to extract longer coherence times from qubits. For the given range
in microseconds and after fitting the data, we get:

TQDD = 25367#8 (11)

Dynamical Decoupling Experiment

—— T2DD = 253.67 us
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Figure 14: Dynamical Decoupling Experiment. The Hahn experiment was modified by

appliying several 7 pulses. Using the fit for the equation Ae 5008 e get the coherence
time of Topp = 253.67us

6 Conclusions

The purpose of the project ”Introduction to Quantum Computing” was to
cover the basics of quantum mechanical phenomena and key concepts in
quantum computing technologies.

The first experiment investigated the state transitions of qubits in order to
find the resonant frequency. Afterwards, a m pulse was applied periodically,
analogous to applying a X-gate to the qubit. As a result Rabi Oscillations
were obtained. After fitting the data the amplitude of the 7 pulse was found.
We used the calibrated 7 pulse to create a state |1) from a qubit in a super-
position and build a discriminator afterwards. The signal from the repeated
experiment showed two clusters - one representing the excited state and one
- the ground state.

The Ramsay pulse sequence was used to determine the precise qubit fre-
quency by driving the pulses off-resonance by a known amount. With the
following experiments the relaxation time 77 and the coherence time 75 were
found. The final experiment, the Dynamical Decoupling, allows the cancel-
lation of noise and it was used to extract longer coherence times from qubits.
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