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1 O(3) Nonlinear Sigma Model

The sigma model was introduced in 1960 by Gell-Mann and Lévy [1] to

describe strong interaction between pions and nucleons. In this model, a

scalar field (originally noted as σ, hence the name of the model) is considered

to be a map from the d-dimensional Rieamannian manifold M (namely a

space time) onto the N -dimensional target space F . The most general form

of the Lagrangian is

L =
1

2
gab (φ) ∂µφ

a ∂µφb, (1.1)

where φa are real scalar fields, a, b = 1, 2, . . . , N , µ = 1, 2, . . . , d, and gab is a

metric tensor on target space N .

Let G be the group of symmetry that acts transitively on F and let H be

subgroup of G that acts trivially on a certain point φ ∈ F . If there are two

elements g1, g2 ∈ G that have the same action on φ0, then g−1
1 g2 (φ) = φ0, so

they belong to the same left coset of G. Since G acts transitively on F , one

can write

F = G/H = {gH : g ∈ G}.

For instance, let ~φ = (φ1, . . . , φN) to be the unit vector on the Riemann

sphere SN−1, so that
N∑
a=1

(φa · φa) = 1. (1.2)

In this case, group of symmetryG is SO(N), and its subgroupH = SO(N−1)

is the group of rotations about φ0. This defines F as

F =
SO(N)

SO(N − 1)
= SN−1. (1.3)

This is the O(N) nonlinear sigma model. In this paper we will investi-
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gate O(3) model which yields soliton solutions in 2 + 1 dimensions. In this

model Lagrangian (1.1) takes the form

L =
1

4
∂µ~φ ∂

µ~φ+ λ
(

1− ~φ · ~φ
)
, (1.4)

where ~φ = (φ1, φ2, φ3) is the vector of three real scalar fields φi.

1.1 Properties of stereographic projection

A sphere S2 can be represented by a complex plane via stereographic projec-

tion. Let N = (0, 0, 1) be a north pole of a unit sphere and P = (φ1, φ2, φ3) is

a point on this sphere. Stereographic projection of point P from a north pole

N on the horizontal plane (φ1, φ2) is a point P ′ = (u,w, 0) of intersection of

the plane and a line NP (see fig. 1).

Figure 1: side view on stereographic projection from north pole

To get coordinates of P ′ one must consider vectors
−−→
NP = (φ1, φ2, φ3 − 1)

and
−−→
NP ′ = (u,w,−1). It is evident that

−−→
NP ′ = α

−−→
NP, (1.5)

3



where α is a real number. Comparing third components of vectors in (1.5),

one obtains

α =
1

1− φ3
, (1.6)

so that

(u,w) = α (φ1, φ2) =

(
φ1

1− φ3
,

φ2

1− φ3

)
. (1.7)

The inverse transformation can be derived from the following observation:

u2 + w2 =
φ2

1 + φ2
2

(1− φ3)
2 =

1− φ2
3

(1− φ3)
2 =

1 + φ3

1− φ3
,

where we used constraint (1.2). From here we get

φ3 = −1− u2 − w2

1 + u2 + w2
, (1.8)

so (1.7) can be rewritten as

(φ1, φ2) = ((1− φ3)u, (1− φ3)w) =

(
2u

1 + u2 + w2
,

2w

1 + u2 + w2

)
. (1.9)

Introducing a complex variable

W =
φ1 + iφ2

1− φ3
= u+ iw, (1.10)

stereographic projection (1.8)-(1.9) can be rewritten as

(φ1, φ2, φ3) =

(
W +W

1 +WW
, i
W −W
1 +WW

,−1−WW

1 +WW

)
, (1.11)

where W denotes the complex conjugate of W .

Note that it is possible to make stereographic projection from the south

pole S = (0, 0,−1) instead of north pole N . To construct this projection,
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vectors
−→
NP and

−→
NP ′ must be replaced with vectors

−→
SP = (φ1, φ2, φ3 + 1)

and
−−→
SP ′ = (u,w, 1) respectively. Applying the same logic to this vectors, we

can write south pole projection

(φ1, φ2, φ3) =

(
W +W

1 +WW
, i
W −W
1 +WW

,
1−WW

1 +WW

)
, (1.12)

where

W =
φ1 + iφ2

1 + φ3
(1.13)

The only (rather expected) difference between (1.10)-(1.11) and (1.12)-(1.13)

is the sign of φ3. We would use north pole projection (1.11) for definiteness.

1.2 Soliton solutions

We can now recast Lagrangian (1.4) in terms of fields W,W :

L =
∂µW∂µW(
1 +WW

)2 =
|∂tW |(

1 +WW
)2 −

|∂iW |(
1 +WW

)2 = T − V, (1.14)

where T and V is kinetic and potential energy densities respectively. Switch-

ing to complex variables z = x+ iy and z̄ = x− iy with derivatives

∂z =
1

2
(∂x − i∂y) , ∂z̄ =

1

2
(∂x + i∂y)

allows us to write potential energy V in the following form:

V =
|Wz|2 + |Wz̄|2(

1 +WW
)2 , (1.15)

where Wz = ∂zW and Wz̄ = ∂z̄W .
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Variation of Lagrangian (1.14) yields the following field equation [2]

Wzz̄ = 2W
WzWz̄(

1 +WW
)2 . (1.16)

Soliton solutions of this equation corresponds to the absolute minimum of the

energy [3]. It can be shown [4] that the total energy E satisfies the following

inequality

E > 4π |Q| , (1.17)

where Q is topological charge, defined by the formula

Q =
1

4π

∫
d2x ~φ ·

[
∂~φ

∂x
× ∂~φ

∂y

]
=

1

4π

∫
|Wz|2 − |Wz̄|2(

1 +WW
)2 dzdz̄. (1.18)

For a static configuration, however, total energy can be written as

E =

∫
V dzdz̄ =

∫
|Wz|2 + |Wz̄|2(

1 +WW
)2 dzdz̄, (1.19)

so the absolute minimum of the energy corresponds to

Wz̄ = 0 for Q = 4πE and Wz = 0 for Q = −4πE.

Therefore, the lower energy bound is saturated by an arbitrary holomorphic

function W (z) if Q > 0 or by arbitrary anti-holomorphic function W (z̄)

if Q < 0. In both cases soliton solutions of equation (1.16) are produced.

The most general form of of holomorphic function W (z) that delivers N -

soliton solution is given by a map

W = λ
P (z)

Q(z)
, (1.20)
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where P (z) and Q(z) are polynomials of degree at most N and at least one

of them of degree N and λ is an arbitrary complex number.

1.2.1 Two-soliton solution

As a first example, we will consider two-soliton solution given by holomorphic

map

W (z) =
(z − a)(z − c)
(z − b)(z − d)

, (1.21)

where a, b, c and d are arbitrary complex numbers. Their values define

positions and characteristic scales of the solitons. Substitution of (1.21)

into (1.18) yields Q = 2, which confirms that (1.21) delivers configuration

of degree two. However, in case a = b, a = d, c = b or c = d map (1.21)

degenerates into a map of degree one (see fig. 2a). Another specific config-

uration represented in fig. 2b. It corresponds to two merged solitons that

forms a circular wall.

1.2.2 Eight-soliton solutions

We can go further and construct soliton solutions of higher degree. For

example, consider a map

W (z) =
4

1
z + 1

z+ 1
2−i

+ 1
z− 1

2−i
+ 1

z−1 + 1
z+1 + 1

z+ 3
2+i

+ 1
z− 3

2+i
+ 1

z−2i

(1.22)

that produces eight separate solitons (see fig. 3a). Note that equivalent map

for parametrization of the fields obtained from the south pole stereographic
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(a) a = c = 1, b = d = i

(b) a = −c = 1, b = −d = i

(c) a = −c = 1, b = −d = 4

Figure 2: Energy density distribution of two-soliton solution (1.21) for
different values of parameters a, b, c and d.
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projection equals

WS(z̄) =
1

WN

=
1

4

(
1

z̄
+

1

z̄ + 1
2 + i

+
1

z̄ − 1
2 + i

+
1

z̄ − 1
+

1

z̄ + 1
+

1

z̄ + 3
2 − i

+
1

z̄ − 3
2 − i

+
1

z̄ + 2i

)
. (1.23)

Indeed, from (1.11) follows

φ3 = −1− |WN |2

1 + |WN |2
.

Substituting this into (1.13), from (1.10) we obtain

WS =
φ1 + iφ2

1 + φ3
=

1− φ3

1 + φ3
WN =

WN

|WN |2
=

1

WN

, (1.24)

which is equivalent to (1.23).

(a) Configuration for map (1.22) (b) Configuration for map (1.25)

Figure 3: Energy density distribution of eight-soliton solutions (1.22)
and (1.25)

Note that solitons generated by map (1.23) are placed in the poles of

the function WS(z̄). This implies that we can define positions of solitons

by setting values of poles of the map WS or WN . For instance, a chain of

eight aligned solitons placed along x axis would be generated by one of the
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(a) Field component φ1

(b) Field component φ2

(c) Field component φ3

Figure 4: The field components of the configuration (1.25)
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following maps:

WN =
λ

7∑
n=0

1
z−(n+d)

,

WS =
1

λ

7∑
n=0

1

z̄ − (n+ d)
,

(1.25)

where d is defines position of the first soliton in the chain and λ is arbitrary

parameter. For the figure 3b we choosed λ = 4 and d = −7/2.

2 Skyrmions

One of the first field theories that supports soliton solutions was the Skyrme

model [5]. Originally this model was aimed to describe baryons as topological

solitons, consequently called skyrmions. Today Skyrme model has a lot of

applications in different areas of study.

2.1 Baby Skyrme Model

We will start our review on Skyrme theory with the model of planar skyrmions

in 2 + 1 dimensions, known as baby Skyrme model. Lagrangian density of

this model is

L =
1

2

(
∂µ~φ
)2

− 1

4

(
~φ ·

[
∂~φ

∂x
× ∂~φ

∂y

])2

− µ2 (1− φ3) , (2.1)

where µ is a rescaled mass parameter and the three dimensional vector of

real scalar fields ~φ = (φ1, φ2, φ3) take values on the unit sphere, ~φ · ~φ = 1.

That is, the field is a topological map φ : S2 → S2, so the model supports
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soliton solutions classified by topological charge (1.18):

Q =
1

4π

∫
d2x ~φ ·

[
∂~φ

∂x
× ∂~φ

∂y

]
. (2.2)

Soliton solutions minimize static energy functional

E =

∫
d2x

1

2

(
∂i~φ
)2

+
1

4

(
~φ ·

[
∂~φ

∂x
× ∂~φ

∂y

])2

+ µ2 (1− φ3)

 (2.3)

that satisfies inequality (1.17). However, solitons in the model (2.1) never

saturates this bound, i.e. E 6= 4π |Q|. This forces us to use another simplifi-

cation. In case of Q = 1 soliton isorotational O(2) symmetry takes place, so

the following hedgehog ansatz can be considered:

~φ = (cos θ sin f(r), sin θ sin f(r), cos f(r)), (2.4)

where r and θ are polar coordinates and f(r) is a monotonically decreasing

function. Since the energy must be finite on the spacial infinity, the field

must approach the vacuum state ~φvac = (0, 0, 1) at r → ∞, which means

that f(∞) = 0.

Substituting (2.4) in (2.3), we get a new parametrization of energy func-

tional in terms of f(r):

E = 2π

∞∫
0

rdr

(
1

2
f ′2 +

sin2 f

2r2

(
f ′2 + 1

)
+ µ2 (1− cos f)

)
. (2.5)

Variation of this functional with respect to f yields the following equation(
r +

sin2 f

r

)
f ′′+

(
1− sin2 f

r2
+
f ′ sin f cos f

r

)
f ′− sin f cos f

r
−rµ2 sin f = 0

(2.6)
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Figure 5: Plot of function f(r) of the Q = 1 baby skyrmion with different
values of parameter µ.

with f(∞) = 0. To find value of f at the origin, lets check the value of

topological charge (2.2):

Q =
1

4π

∫
d2x ~φ ·

[
∂x~φ× ∂y~φ

]
=

1

4π

∫
rdrdθ ~φ ·

[(
cos θ∂r~φ−

sin θ

r
∂θ~φ

)
×
(

sin θ∂r~φ+
cos θ

r
∂θ~φ

)]
=

1

2

∞∫
0

dr ~φ ·
[
∂r~φ× ∂θ~φ

]
= −1

2

∞∫
0

dr f ′ sin f =
1

2

∞∫
0

∂

∂r
(cos f) dr =

1

2
(1− cos f(0)) .

(2.7)

As we can see, Q = 1 if f(0) = π. Results of numerical integration of

equation (2.6) with boundary conditions

f(∞) = 0, f(0) = π (2.8)
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is given on the figure 5.

2.2 Skyrme model

We can proceed further and consider Skyrme model in 3 + 1 dimensions.

Lagrangian density of this model is

L = −1

2
tr
[(
U †∂µU

) (
U †∂µU

)]
+

1

16
tr
[
(∂µU)U †, (∂νU)U †

]2
+m2 tr (U − I) ,

(2.9)

where U ∈ SU(2) is the Skyrme field – a unitary unimodular matrix, and m

is the mass of this field. It can be written in terms of four scalar fields (σ, πa):

U = σ + iπa · τ a, (2.10)

where τ a are the three Pauli matrices.

Matrix U is restricted to the surface of the sphere S3, i.e.

U → I as r →∞.

Therefore, field U is a map from coordinate space S3 to the SU(2) group

space, which is isomorphic to S3. This map is characterized by topological

charge [2]

Q = − 1

24π2

∫
d3xεijk tr [LiLjLk] , (2.11)

where Li = U † (∂iU) is a left-handed su(2) current. Static energy functional

of the model is given by a formula

E = −
∫
d3x

{
1

2
tr [LiLi] +

1

16
tr [Li, Lj]

2 +m2 tr (U − I)
}
. (2.12)

Just like in baby Skyrme model, we can make use of the rotational sym-
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metry of the Q = 1 configuration and consider static hedgehog ansatz

U(r) = cos f(r) + i sin f(r)r̂a · τ a, (2.13)

where r̂a = ra/r and f(r) is a real valued monotonically decreasing function.

Boundary conditions on this function is defined by the value of topological

charge (2.11).

To calculate this value, we should first substitute ansatz (2.13) in the

definition of current Li:

Li = U † (∂iU)

= iτ a
(
r̂ar̂if

′ +
δia − r̂ar̂i

r
sin f cos f + εiab

r̂b

r
sin2 f

)
= iτ alai.

(2.14)

Our second step is to simplify the integrand in (2.11). To do this, we make

use of the property of Pauli matrices

tr
(
τ aτ bτ c

)
= 2iεabc,

which allows us to write

εijk tr (LiLjLk) = 2i4εijkεabclailbjlck = 2εijkεabc (sai + aai) (sbj + abj) (sck + ack) ,

(2.15)

where

sai = sia =

(
f ′ − sin f cos f

r

)
r̂ar̂i +

sin f cos f

r
δia = Rrai + dδai, (2.16)

aai = −aia = εian
r̂n

r
sin2 f = aεianr̂

n, (2.17)
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Recall that

rnn =
rnrn
r2

= 1, raiaai = 0, εabcrbc = 0, εabcrairbj = 0,

εijkεabcackrbjδai = aεijkεibcεkcnrbj r̂
n =

(
δicδ

j
n − δinδjc

)
εibcrbj r̂

n = 0,

εijkεabcaaiabj = a2εijkεabcεainεbjmr
mn = a2

(
δkmδ

c
n + δknδ

c
m

)
rmn = 2a2rkc,

εijkεabcδairbj =
(
δjbδkc − δjcδkb

)
rbj = δkc − rkc,

εijkεabcδaiδbjack = 2δkcack = 0,

so the following relations are satisfied

εijkεabcsaisbjack = 0,

εijkεabcsaiabjack = 2a2raisai = 2a2 (R + d) ,

εijkεabcaaiabjack = 2a2raiaai = 0,

εijkεabcsaisbjsck = εijkεabc
(
dRraiδbj + dRrbjδai + d2δaiδbj

)
sck =

εijkεabcd2 (δaiδbj(Rrck + dδck) + (Rraiδbj +Rrbjδai) δck) = 6d2 (R + d) .

(2.18)

Using this relations, we can expand expression (2.15) to get the following

result:

εijk tr (LiLjLk) =

4d2 (R + d) + 3 · 4a2 (R + d) = 6 (R + d)
(
a2 + d2

)
= 12f ′

sin2 f

r2
.

(2.19)

Now topological charge (2.11) can be easily calculated:

Q = − 1

24π2

∫
r2 sin θ drdθdϕ · 12f ′

sin2 f

r2

= −2

π

∫
dr f ′ sin2 f = −1

π

[
f(r)− sin 2f(r)

2

]∞
0

.

(2.20)
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It is evident that for Q to be equal unity, f(r) must satisfy following boundary

conditions:

f(0) = π, f(∞) = 0. (2.21)

Total energy functional of the static hedgehog configuration can be writ-

ten as

E = 4π

∞∫
0

dr

(
r2f ′2 + 2 sin2 f

(
1 + f ′2

)
+

sin4 f

r2
+ 4r2m2 (1− cos f)

)
(2.22)

and corresponding variational equation

(
r2 + 2 sin2 f

)
f ′′+2rf ′−sin 2f

(
1− f ′2 +

sin2 f

r2

)
−4r2m2 sin f = 0. (2.23)

This equation, supplied with boundary conditions (2.21), can be solved nu-

merically. Resulting function f(r) is presented in figure 6.

Figure 6: Plot of function f(r) for skyrmions of different mass m.
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A Numerical solution

In this section we will explain method used to find numerical solutions of

equations (2.6) and (2.23).

Consider equation (2.6). First, we change domain of integration from [0,∞)

to [0, 1) by transformation

r =
t

1− t
, t ∈ [0, 1). (A.1)

which changes the form of the equation(
t

1− t
+

1− t
t

sin2 v(t)

)(
(1− t)4v′′(t)− 2(1− t)3v′(t)

)
+

(
1− (1− t)2

t2
sin2 v(t) +

(1− t)3

t
v′(t) sin v(t) cos v(t)

)
(1− t)2v′(t)

− 1− t
t

sin v(t) cos v(t)− 1− t
t

µ2 sin v(t) = 0

(A.2)

and boundary conditions

v(0) = π, v(1) = 0 (A.3)

with v(t) = f
(

t
1−t
)
.

Next we divide interval [0, 1) into N = 512 parts of length h = 1/N . This

yields a set of N + 1 points {tNi=0 | ti+1 = ti + h}. Values of derivatives at

point ti can be approximated by the following formulas

v′(ti) ≈
vi+1 − vi+1

2h
,

v′′(ti) ≈
vi+1 − 2vi + vi−1

h2
,

(A.4)

where vi ≡ v(ti) and i = 1, 2, . . . N − 1. Substituting (A.4) into (A.2), we get
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discretized equations

(1− ti)3

h2

(
ti

1− ti
+

1− ti
ti

sin2 vi

)
((1− ti)(vi+1 − 2vi + vi−1)− h(vi+1 − vi−1))

+
(1− ti)2

2h
(vi+1 − vi−1)

(
1− (1− ti)2

t2i
sin vi +

(1− ti)2

2hti
(vi+1 − vi−1) cos vi sin vi

)
− 1− ti

ti
cos vi sin vi − µ2 ti

1− ti
sin vi = 0, i = 1, 2, . . . N − 1,

(A.5)

where v0 = π and vN = 0. This equations can be solved with respect to vi

using Newton’s method with initial guess

viniti = π(1− ti). (A.6)

The same procedure applies to equation (2.23) for Skyrmions.
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