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Abstract

In this report we discuss the kink and anti-kink solutions of systems like φ4 theory , Sine
Gordon model and φ6 theory and finally we’ll use numerical methods to obtain the kink
and anti-kink solution for a certain problem where the potential interpolates between
Sine Gordon, φ4 and potential with 2 saddle points.
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1 Introduction

1.1 What are solitons?

Solitons are stable, localized configurations, particle-like wave packet that maintains its

shape while it propagates at a constant velocity. The ending “-on” indicates the particle-

like nature of the solution

One of the simplest examples of solitons is the class of the kink configurations, which

appears in the (1+1) dimensional models with a potential possessing two or more degen-

erated minima.

To obtain the kink solution one needs to solve the corresponding field equations either

analytically or numerically.

1.2 Obtaining a solution

for a linear scalar field φ, the Lagrangian can be written as

l =
1

2
∂µφ∂

µφ− V (φ)

From this Lagrangian we can now derive the corresponding field equation using Euler-

Lagrange
∂l

∂φ
= ∂µ

∂l

∂(∂µφ)

∂l
∂φ

= −dV
dφ

∂l
∂(∂µφ)

= ∂µφ

∂µ
∂l

∂(∂µφ)
= ∂µφ∂µφ

∂µφ∂µφ = −dV
dφ

since our study would be on the 1+1 dimension ,gµν = diag(1,−1) , the Lagrangian is

l =
1

2
∂2t φ−

1

2
∂2xφ− V (φ)

and equation of motion is

∂2t φ− ∂2xφ+
dV

dφ
= 0

our interest is to study the kink and anti-kink solution ,so we will study the equation in

the static frame where there’s no time evolution.
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note that the Lagrangian is Lorentz invariant so we can obtain the solution in the static

frame and then boost it to get the moving solution

so ∂2t φ = 0

l = −1

2
∂2xφ− V (φ) (1)

∂2xφ−
dV

dφ
= 0 (2)

taking x- derivative of

d

dx

(
1

2
∂2xφ− V (φ)

)
= 2.

1

2
dxφd

2
xφ−

dV

dφ
.
dφ

dx
= 0

dxφ

(
d2xφ−

dV

dφ

)
= 0

we notice that the term in the brackets is the same as the L.H.S from equation (2). since

we know from the equation of motion that this term vanishes, then we have:

1

2
∂2xφ− V (φ) = const

now we need to find this constant. since we’re interested in the finite energy solution ,

then ∂φ
∂x

|x|→∞−−−−→ 0

V (φ)
|x|→∞−−−−→ 0

applying these conditions to equation, we evaluate the constant to equal 0

1

2
(dxφ)2 = V (φ)

taking the root
dφ

dx
= ±

√
2V (φ) (3)

using this equation (3) , we’ll substitute with each potential (V) in every model and

integrate both sides to get the static solution∫
dx = ±

∫
dφ√
2V

2 Sine Gordon Model

the potential in Sine Gordon model is:

V (φ) = 1− Cosφ
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[3] This potential has an infinite number of degenerate vacua at φo = 2πn, n ∈ Z , for

which V
′′
(φo) = 1

2 vacua at x=0 , x= 2π

∫
dx = ±

∫
dφ√

2
√
1−Cosφ

√
1− Cosφ =

√
2Sinφ

2

∫
dx = ±

∫
dφ

2Sinφ
2

∫
dx = ±

∫ Sin2 φ
4
+Cos2 φ

4

4Sinφ
4
Cosφ

4

x− xo = ±
(
ln(Sinφ

4
)− ln(Cosφ

4
)
)

x− xo = ±ln
(
tanφ

4

)
φ = 4tan−1e(x−xo)

3 φ4 theory

in the φ4 theory the potential is

V (φ) =
1

2
(1− φ2)2
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it has 2 vacua at φ = 1, φ = −1

∫
dx = ±

∫
dφ√
(1−φ)2

= ±
∫

dφ√
(1−φ)

x− xo = ±arctanhφ
φ = ±tanh(x− xo)

localizedatxo = 1.5

4 φ6 theory

in φ6 theory the potential has the form:

V (φ) =
1

2
φ2(1− φ2)2

and has 3 vacuas at 0, 1, -1∫
dx =

∫
± dφ√

2 1
2
φ2(1−φ2)2

∫
dx = ±

∫ (
1
φ
− 0.5

1−φ −
0.5
φ+1

)
dφ

x− x0 = ±
(
lnφ− 1

2
(ln(1− φ) + ln(φ+ 1))

)
x− x0 = ±ln φ√

(1−φ2)
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e2(x−xo) = ± φ2

1−φ2

φ(0,1) =

√
1

1 + e−2(x−xo)
=

√
1 + tanh(x− x0)

2

φ(−1,0) = −
√

1

1 + e2(x−xo)
= −

√
1− tanh(x− x0)

2

5 The model

We have 1+1 dimension with the potential

V (φ) = (1− ε)(1− Cosφ) +
εφ2

8π2
(φ− 2π)2, ε ∈ [0, 2.7]

at ε = 0 it’s the standard Sine Gordon potential, at ε = 1 it’s shifted and rescaled φ4

model

, at ε = 2.7 it’s potential with 2 saddle points

dv

dφ
= (1− ε)Sinφ+

εφ

2π2
(φ− 2π)(φ− π)

from equation (1) the corresponding equation of motion is

φtt − φxx + (1− ε)sinφ+
εφ

2π2
(φ− 2π)(φ− π) = 0

since we’re in interested in finding the kink and anti kink solution the equation of motion

in the static frame, the field equation is

φxx = (1− ε)sinφ+
εφ

2π2
(φ− 2π)(φ− π)

with the boundary conditions:

φ(−∞) = 0,

φ(+∞) = 2π

This is a boundary value problem , we will solve it numerically using the shooting method
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results

potential shape:

note the 2 saddle points at 2.7
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The potential varying with the parameter ε
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6 Conclusion

After deriving the kink,anti-kink solution analytically in 3 well-known models ,e.g., Sine

Gordon, φ4 and φ6 theory.

We moved to a different problem where the parameter varying potential interpolates

between 3 cases, A solution was obtained numerically using the shooting method and we

saw how the solution varied with the parameter ε
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