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Abstract

The collisions of heavy ions are performed to study the quark-gluon plasma and the beginning of the
universe. In this report, the energy density and pressure of quark-gluon plasma were calculated
depending on Maxwell-Boltzmann distribution function. In addition, propagation of nonlinear
waves inside the QGP medium has been studied considering the background medium as the one
following the Boltzmann-Gibbs and Tsallis statistics.
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1 Introduction

Experiments such as STAR and PHENIX at Brookhaven National Laboratory and ALICE and
ATLAS at CERN were conducted by colliding heavy-ions like Au/Pb to create the hot and dense
Quark Gluon Plasma (QGP) matter and study its properties. Studying the Quark-Gluon Plasma
(QGP) could be possible through the internal probes such as high-energetic particles, which are
generated in the pre-equilibrium phase. These particles generate nonlinear waves while passing
through QGP and these waves evolve with time [3, 4]. The reason for using such an internal probe
is due to the fact that the QGP medium lasts for a very short time. Tsallis statistics [5] is a new
form of statistics, which is generalized to study the non-extensive quark-gluon plasma [6] and it
follows the power law distribution (i.e. E−α). In contrast, Boltzmann-Gibbs statistics is employed

to study the extensive type of the QGP and described by the exponential distribution (i.e. e
−E
T ).

1.1 Quark-Gluon Plasma

The term ”Quark-Gluon plasma” means that we have a plasma of quarks and gluons (i.e. de-
confinement phase), which are called ”Partons”. This state of matter could be possible when two
heavy-ions collided at

√
s = 10 − 15 GeV per nucleon [7, 8]. However, it is difficult to separate a

single quark [2]. Ultra-relativistic heavy ion collisions aim to investigate many aspects of particle
physics, most importantly, simulate and understand the formation of universe. Quark-gluon plasma
could be obtained in the laboratory system through two ways:

• High Temperature: Reaching an extreme value of temperature about 170 MeV can be
possible by colliding two heavy nuclei at high energies. At this temperature, hadrons are
melted to form the QGP [9] and it will be formed within 1 fm/c after the collisions of the
two beams, while the hadronization starts after about 10 fm/c. Figure 1 [1] shows the
QGP evolution of the space-time, where Tfo, Tch and Tc are the temperatures when hadrons
stop elastic collisions, when hadrons have their stable form and stop inelastic collisions with
themselves and when QGP is about to transfer to the hadronization phase [8].

Figure 1: Evolution of heavy-ion collisions in the space-time frame [1]
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• High Pressure: As presented in figure 2 [2], we start from the atomic scale of matter, after
stripping the electrons, we will have hadrons. By increasing the density of the participating
hadrons and extremely pressurizing them, this will leads to formation of the QGP state of
matter.

(a) Atomic Scale (b) Hadronic Scale (c) QGP Formation

Figure 2: Transfer from the atomic scale to the QGP at higher densities (compressing) [2]

1.2 Propagation of Waves in QGP

Studying the effect of propagated high energetic particles, which are produced in the pre-equilibrium
phase [4] inside the QGP acts as a promising technique to understand the its properties, which
could be done by analyzing the perturbations resulting from deposition of particle’s energy. These
perturbations in the system could be linear or non-linear. Considering the shape of the waves
resulted, we have two solutions:

• Soliton solution: This is the solution of the Korteweg-de Vries equation (KdV), which de-
pends on the equations of hydrodynamics and this solution appears when the wave maintains
its shape without breaking [3].

• Breaking Wave Solution: This arises when the waves do not maintain the initial shape
as a function of time and break [4].

2 Hydrodynamics and Mathematical Formalism

2.1 Relativistic Hydrodynamics and QGP

To describe the evolution of space-time, relativistic hydrodynamics is used to study energy density
and the fluctuations in fluids such as the QGP [3, 4]. We can get the equations of hydrodynamics
due to conservation of the energy and momentum in a gas [10].

2.2 Relativistic Euler’s Equation

Let us consider the pressure as P and energy density as ϵ. We assume there is a frame of reference
in fluid ”at rest” at specific space and time.
In an ideal fluid, the energy-momentum tensor is of the form [11]:

T0 =

(
ϵ 0
0 Pδij

)
(2.1)
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The energy-momentum tensor [11, 12] of a fluid that moves with velocity v is given as:

Tµν = Pηµν + (ϵ+ P )uµuν (2.2)

For a fluid, the conservation of energy and momentum [12] will give:

∂µTµν = ∂νP + ∂µ [(ϵ+ P )uµuν ] = 0 (2.3)

Equation (2.3) vanishes (i.e. ∂νTµν = 0) and leads to the following two equations [11]:

• At ν = 0, eq. (2.3) becomes:

∂P

∂t
− ∂

∂t

{
ϵ+ P

1− v2

}
+∇.

{
(ϵ+ P )v

1− v2

}
= 0

• While, at ν = i, we have:

∂vi
∂t

+ (v.∇)vi =
(v2 − 1)

(ϵ+ P )

(
∇iP + vi

∂P

∂t

)
(2.4)

From eq. (2.4), we will get equation 2.6, representing the one dimensional (i.e. x-direction) form
of the Euler’s relativistic equation [13]

∂v

∂t
+ v

∂v

∂x
=

(v2 − 1)

(ϵ+ P )

(
∂P

∂x
+ v

∂P

∂t

)
(2.5)

2.2.1 Derivation of Continuity Equation for Entropy Density (s)

Also, from the relativistic form of the continuity equation for the density of baryons [3, 12]:

∂νjB
ν = 0 (2.6)

Where νjB
ν = uνρB , then eq. (2.6) can be written as:

∂ρB
∂t

+
vρB

(1− v2)

(
∂v

∂t
+ v⃗.∇⃗v

)
+ ∇⃗. (ρB v⃗) = 0 (2.7)

The projection of eq. (2.3) on the uν direction gives the density of entropy continuity equation in
its relativistic form [13]:

(ϵ+ P )∂µu
µ + uµ∂µϵ = 0 (2.8)

By using Gibbs relation:
ϵ+ P = µBρB + Ts (2.9)

From the first thermodynamics law:

dϵ = Tds+ µBdρB (2.10)

Using the conditions that the baryon density is zero, so ρB = dρB = 0 and the temperature is high
as we have a hot quarks-gluons gas T ̸= 0, then eq. (2.10) becomes:

ϵ = Ts (2.11)

By substituting with equations (2.9) and (2.11) in eq. (2.8) we get:

(µBρB + Ts)∂µu
µ + uµ∂µTs = 0 =⇒ Ts∂µu

µ + uµ∂µTs = 0 (2.12)

Finally, for an ideal fluid we estimate that:

∂ν(su
ν) = 0 (2.13)

The last equation will then expanded to get:

∂s

∂t
+

1

1− v2
vs

(
∂v

∂t
+ v⃗.∇⃗v

)
+ ∇⃗.(s.v⃗) = 0 (2.14)
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3 Energy Density and Pressure in the QGP Using Maxwell-
Boltzmann Distribution Function

The description of the system’s dynamics depends on identification of the state variables such as
energy density(ϵ) and pressure (p). The Maxwell-Boltzmann distribution function is given in terms
of energy E, chemical potential µ = 0 and temperature T by the following form [14]:

f(p) =
1

(2π3)
e(

µ−E
T ) =

1

(2π3)
e(

−E
T ) (3.1)

In Boltzmann’s distribution, the energy density is given by:

ϵ =
1

(2π3)

∫
Ee(

−E
T )d3p (3.2)

On the other hand, the pressure is given by the following form:

p =
1

(2π3)

∫
|p⃗|2

3E
e(

−E
T )d3p (3.3)

Defining dimensionless variables in terms of mass (m), temperature (T ) and momentum (p⃗), we
have:

m

T
= z and

E

T
= τ

The energy is given by:

E =
√
p2 +m2 = Tτ

|p| = T (τ2 − z2)
1
2 |p⃗|d|p⃗| = T 2τdτ |p⃗|2d|p| = T 3τ(τ2 − z2)

1
2 dτ

From modified Bessel function of second kind:

Kn(z) =
2nn!

2n!

1

zn

∫ ∞

z

(τ2 − z2)n−
1
2 e−τdτ (3.4)

To get the first and second orders of K, we substitute by 1 and 2 instead of n

K1(z) =
211!

2!

1

z1

∫ ∞

z

(τ2 − z2)1−
1
2 e−τdτ =

1

z

∫ ∞

z

(τ2 − z2)
1
2 e−τdτ (3.5)

K2(z) =
222!

4!

1

z2

∫ ∞

z

(τ2 − z2)2−
1
2 e−τdτ =

1

3z2

∫ ∞

z

(τ2 − z2)
3
2 e−τdτ (3.6)

3.1 Energy Density

The energy density is given by:

ϵ =
1

(2π)3

∫ ∞

z

Ee(
−E
T )d3p (3.7)

Then, by changing the variables:

ϵ =
T 4

2π2

∫ ∞

z

τ2(τ2 − z2)
1
2 e−τdτ
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By adding and subtracting z2 inside the integral

ϵ =
T 4

2π2

∫ ∞

z

[τ2 − z2 + z2](τ2 − z2)
1
2 e−τdτ (3.8)

By redistributing the right-hand bracket to the left-hand one inside the integral, we get:∫ ∞

z

(τ2 − z2)(τ2 − z2)
1
2 e−τdτ =

∫ ∞

z

(τ2 − z2)
3
2 e−τdτ (3.9)

From equations (3.5) and (3.9) ∫ ∞

z

(τ2 − z2)
3
2 e−τdτ = 3z2K2(z) (3.10)

Similarly, ∫ ∞

z

z2(τ2 − z2)
1
2 e−τdτ = z2

∫ ∞

z

(τ2 − z2)
1
2 e−τdτ (3.11)

From eq. (3.6) and eq.(3.11), we have∫ ∞

z

(τ2 − z2)
1
2 e−τdτ = zK1(z) (3.12)

By substituting from equations (3.10) and (3.12), eq. (3.8) will be on the form:

ϵ =
T 4

2π2

[
3z2K2(z) + z3K1(z)

]
(3.13)

ϵ =
T 4

2π2

[
3(
m

T
)2K2(

m

T
) + (

m

T
)3K1(

m

T
)
]

(3.14)

3.2 Pressure

The pressure (P) is given by:

P =
1

(2π)2

∫
1

3

|p⃗|2

E
e(

−E
T )d3p (3.15)

Using
E = Tτ and |p⃗|2 = T 2(τ2 − z2)

P =
T 4

6π2

∫ ∞

z

(τ2 − z2)
3
2 e−τdτ (3.16)

From equations (3.6) and (3.16), the integration will be valued as:∫ ∞

z

(τ2 − z2)
3
2 e−τdτ = 3z2K2(z)

Finally, the pressure will be as the following:

P =
T 4

6π2
(3z2)K2(z) =

T 4

2π2
(z2)K2(z) (3.17)

P =
T 4

2π2
(
m

T
)2K2(

m

T
) (3.18)

Energy density and pressure help us to build the MIT bag equation of state [3], that will be used
in the next section.
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4 The Wave Equation at Finite Temperature T ̸=0 (Boltz-
mann Statistics)

Euler and continuity equations are combined [3].
Euler’s equation

∂v⃗

∂t
+ (v⃗.∇⃗)v =

(v2 − 1)

(ϵ+ P )

(
∇⃗P + v⃗

∂P

∂t

)
(4.1)

The continuity equation for the entropy density:

∂s

∂t
+

1

(v2 − 1)
vs

(
∂v

∂t
+ v⃗.∇⃗v

)
+ ∇⃗.(sv⃗) = 0 (4.2)

As the and the baryon chemical potential vanishes then we have ρB = 0 and µ = 0
According to the MIT bag model:

3(P + B) = ϵ− B =
8π2

15
T 4 +

6

π2

∫ ∞

0

[
2(

1 + e
p
T

)p3dp] (4.3)

As B is the bag constant, so we have ∂B
∂T = 0, as the entropy is given by s = ( ∂p

∂T ) at constant
volume V

s =
∂

∂T

(
−B +

37

90
π2T 4

)
= 0 + 4

37

90
π2T 3 = 4

37

90
π2T 3 (4.4)

By inserting B = 37
30π

2(TB)
4 into ϵ− B = 37

30π
2(T )4, where TB

4 is a suitable temperature number
to get value of B, so we have:

ϵ =
37

30
π2(T )4 + B =

37

30
π2(T )4 +

37

30
π2(TB)

4 =
37

30
π2

(
T 4 + TB

4
)

(4.5)

By solving ϵ − B = 37
30π

2T 4 to get the temperature, then T 4 = 30
37π2 (ϵ − B). The temperature is

given by:

T =

[
30

37π2
(ϵ− B)

] 1
4

(4.6)

By inserting the previous equation into eq. (4.4), then we get the entropy:

s = 4
37

90
π2

[
30

37π2
(ϵ− B)

] 3
4

(4.7)

Substituting by eq.(4.7) in the following equation:

∂s

∂t
+

1

(v2 − 1)
vs

(
∂v

∂t
+ v⃗.∇⃗v

)
+∇.(sv⃗) = 0 (4.8)

We have:

(1− v2)

[(
90

148π2T 4

)
∂ϵ

∂t
+
∂v

∂x
+

(
90v

148π2T 4

)
∂ϵ

∂x

]
+ v

(
∂v

∂t
+ v

∂v

∂x

)
= 0 (4.9)
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From equation:

3(p+ B) = ϵ− B =
37

30
π2T 4 (4.10)

ϵ+ p =
148

90
π2T 4 (4.11)

Inserting eq.(4.11) into eq. (4.1), and by using ∇⃗P = 1
3∇⃗ϵ and also ∂P

∂t = 1
3
∂ϵ
∂t , so:

148

30
π2T 4

[
∂v

∂t
+ v

∂v

∂x

]
= (v2 − 1)

(
∂ϵ

∂x
+ v

∂ϵ

∂t

)
(4.12)

We then rewrite equations (4.11) and (4.12) in terms of dimensionless variables:

ϵ̂ =
ϵ

ϵ0
v̂ =

v

cs

Where ϵ0 is the reference energy density and then by expanding the previous equations in power
of σ:

ϵ̂ = 1 + σϵ1 + σ2ϵ2 + ... v̂ = 1 + σv1 + σ2v2 + ...

Changing variables to (ξ − τ)

ξ = σ
1
2
(x− cst)

R
τ = σ

3
2
cst

R
(4.13)

As R is a length parameter.

By using eq. (4.13) and changing the variables, we will get the following two equations in order of
σ and σ2:

σ

{
− 90ϵ0
148π2T 4

∂ϵ1
∂ξ

+
∂v1
∂ξ

}
+ σ2

{
90ϵ0

148π2T 4

(
−∂ϵ2
∂ξ

+
∂ϵ1
∂τ

+ v1
∂ϵ1
∂ξ

)
+
∂v2
∂ξ

− cs
2v1

∂v1
∂ξ

}
= 0

(4.14)

σ

{
−148π2T 4cs

30

∂v1
∂ξ

+
ϵ0
cs

∂ϵ1
∂ξ

}
+ σ2

{
148π2T 4cs

30

(
−∂v2
∂ξ

+
∂v1
∂τ

+ v1
∂v1
∂ξ

)
+
ϵ0
cs

∂ϵ2
∂ξ

− ϵ0csv1
∂ϵ1
∂ξ

}
= 0

(4.15)
For above equations, each bracket must be equal to zero, so from (4.14) we have:

σ

(
− 90ϵ0
148π2T 4

∂ϵ1
∂ξ

+
∂v1
∂ξ

)
= 0

∂v1
∂ξ

=
90ϵ0

148π2T 4

∂ϵ1
∂ξ

So, we get:

v1 =
90ϵ0

148π2T 4
ϵ1 (4.16)

Replacing (ξ − τ) with (x-t), then we have:

∂ϵ̂1
∂t

+ cs
∂ϵ̂1
∂x

+

(
90ϵ0

148π2T 4

)
2

3
csϵ̂1

∂ϵ̂1
∂x

= 0 (4.17)

As ϵ̂1 = σϵ1 represents a small perturbation in ϵ

Eq.(4.17) acts as an equation for a breaking wave at finite value of temperature. Where T represents
the temperature of background (T = T0), which is related to the energy density as:

ϵ =
37

30
π2(T 4 + TB

4) (4.18)
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Using ϵ0 = 37
30π

2(T0
4 + TB

4), and substituting in eq. (4.17), we have:

∂ϵ̂1
∂t

+ cs
∂ϵ̂1
∂x

+

[
90 37

30π
2(T0

4 + TB
4)

148π2T 4

]
2

3
csϵ̂1

∂ϵ̂1
∂x

= 0

∂ϵ̂1
∂t

+ cs
∂ϵ̂1
∂x

+

[
1 +

TB
4

T0
4

]
3

4

2

3
csϵ̂1

∂ϵ̂1
∂x

= 0

Finally, we have:

∂ϵ̂1
∂t

+ cs
∂ϵ̂1
∂x

+

[
1 +

(
TB
T0

)4
]
cs
2
ϵ̂1
∂ϵ̂1
∂x

= 0 (4.19)

5 Tsallis Statistics

5.1 Energy Density and Pressure

Depending on the bosonic and fermionic single-particle distributions, we can get the energy density
and the pressure of a gas of a massless bosons or fermions [4, 15]. The energy density and pressure
are given as:

ϵi =
g

(2π)3

∫
Epnid

3p (5.1)

Pi =
g

3(2π)3

∫
p2

Ep
nid

3p (5.2)

Where ”i” is replaced by ”b” in case of bosons and ”f” in case of fermions.

5.1.1 For Massless Bosons (m = 0)

The single particle distribution of a boson is given by:

nb =
1[

1 + (q − 1)
Ep−µ

T

] q
q−1 − 1

(5.3)

As we suppose that we have a massless system, so the mass m = 0 and the chemical potential
µ = 0. Hence, eq. (5.3) will be developed to be:

nb =
1[

1 + (q − 1)
Ep

T

] q
q−1 − 1

(5.4)

As Ep =
√
p2 +m2, and m = 0, so Ep = p. Then, from eq. (5.4) we have:

nb =
1[

1 + (q − 1) p
T

] q
q−1 − 1

(5.5)

Returning to eq. (5.1), the energy density distribution for bosons is given by:

ϵb =
g

(2π)3

∫
Ep

1[
1 + (q − 1) p

T

] q
q−1 − 1

d3p (5.6)

Similarly, from eq. (5.2), we have:

Pb =
g

3(2π)3

∫
p2

Ep

1[
1 + (q − 1) p

T

] q
q−1 − 1

d3p (5.7)
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Finally, we can express ϵb and Pb as following:

ϵb =
gT 4

2π2(q − 1)3q

[
3ψ(0)

(
3

q
− 2

)
+ ψ(0)

(
1

q

)
− 3ψ(0)

(
2

q
− 1

)
− ψ(0)

(
4

q
− 3

)]
(5.8)

As Pb =
1
3ϵb, so we have:

Pb =
gT 4

6π2(q − 1)3q

[
3ψ(0)

(
3

q
− 2

)
+ ψ(0)

(
1

q

)
− 3ψ(0)

(
2

q
− 1

)
− ψ(0)

(
4

q
− 3

)]
(5.9)

5.1.2 For Massless Fermions (m = 0)

For non-extensive fermions, we consider the single-particle distribution function for a fermion:

nf =
1[

1 + (q − 1) p
T

] q
q−1 + 1

(5.10)

Similarly, as we did in equations (5.5) and (5.6), we will have:

ϵf =
g

(2π)3

∫
Ep

1[
1 + (q − 1) p

T

] q
q−1 + 1

d3p (5.11)

Pf =
g

3(2π)3

∫
p2

Ep

1[
1 + (q − 1) p

T

] q
q−1 + 1

d3p (5.12)

Then, for a non-extensive massless gas of fermions we have the energy density is given by:

ϵf =
gT 4

2π2(q − 1)3q

[
3ϕ

(
−1, 1,

2

q
− 1

)
− 3ϕ

(
−1, 1,

3

q
− 2

)
+ ϕ

(
−1, 1,

4

q
− 3

)
− ϕ

(
−1, 1,

1

q

)]
(5.13)

and the pressure is given by:

Pf =
gT 4

6π2(q − 1)3q

[
3ϕ

(
−1, 1,

2

q
− 1

)
− 3ϕ

(
−1, 1,

3

q
− 2

)
+ ϕ

(
−1, 1,

4

q
− 3

)
− ϕ

(
−1, 1,

1

q

)]
(5.14)

5.1.3 For Massive Fermions (m ̸= 0)

For non-extensive massive fermions, we consider the single-particle distribution function as:

nf =
1[

1 + (q − 1)
Ep

T

] q
q−1

+ 1

(5.15)

ϵf =
g

(2π)3

∫
Ep

1[
1 + (q − 1)

Ep

T

] q
q−1

+ 1

d3p (5.16)

Pf =
g

3(2π)3

∫
p2

Ep

1[
1 + (q − 1)

Ep

T

] q
q−1

+ 1

d3p (5.17)
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Hence, for a non-extensive massive gas of fermions we have the energy density and pressure distri-
butions are given by:

ϵf =
gT 4

2π2(q − 1)3q

[
3ϕ

(
−1, 1,

2

q
− 1

)
− 3ϕ

(
−1, 1,

3

q
− 2

)
+ ϕ

(
−1, 1,

4

q
− 3

)
− ϕ

(
−1, 1,

1

q

)]
− gm2T 2

4π2(q − 1)q

[
ϕ

(
−1, 1,

2

q
− 1

)
− ϕ

(
−1, 1,

1

q

)]
(5.18)

Pf =
gT 4

6π2(q − 1)3q

[
3ϕ

(
−1, 1,

2

q
− 1

)
− 3ϕ

(
−1, 1,

3

q
− 2

)
+ ϕ

(
−1, 1,

4

q
− 3

)
− ϕ

(
−1, 1,

1

q

)]
− gm2T 2

4π2(q − 1)q

[
ϕ

(
−1, 1,

2

q
− 1

)
− ϕ

(
−1, 1,

1

q

)]
(5.19)

Energy density and pressure for bosons and fermions can help us to build a non-extensive MIT
bag model [4], to be used in the next section.

5.2 Derivation of the Breaking Wave Equation Using Tsallis Statistics

By considering the Euler’s relativistic (2.3) and the entropy conservation equations, we have

∂v

∂t
+ v

∂v

∂x
=

(v2 − 1)

(ϵ+ P )

(
∂P

∂x
+ v

∂P

∂t

)
Where pressure P and energy density ϵ are functions of space x and time t

∂v

∂t
+ v

∂v

∂x
+ E1(1− v2)

(
∂ϵbag
∂x

+ v
∂ϵbag
∂t

)
= 0 (5.20)

C1
(
1− v2

)(
v
∂ϵbag
∂x

+
∂ϵbag
∂t

)
+ C2

(
∂v

∂x
+ v

∂v

∂t

)
= 0 (5.21)

By considering the expressions of energy density and pressure to be used in the non-extensive bag
model:

ϵb,1 =
g

2π2(q − 1)3q

[
3ψ(0)

(
3

q
− 2

)
+ ψ(0)

(
1

q

)
− 3ψ(0)

(
2

q
− 1

)
− ψ(0)

(
4

q
− 3

)]

ϵf,1 =
g

2π2(q − 1)3q

[
3ϕ

(
−1, 1,

2

q
− 1

)
− 3ϕ

(
−1, 1,

3

q
− 2

)
+ ϕ

(
−1, 1,

4

q
− 3

)
− ϕ

(
−1, 1,

1

q

)]
ϵf,2 = − g

4π2(q − 1)q

[
ϕ

(
−1, 1,

2

q
− 3

)
− ϕ

(
−1, 1,

1

q

)]
Pb, 1 =

ϵb,1
3

Pf , 1 =
ϵf,1
3

Pf , 1 = ϵf,2 (5.22)

ϵbag,1 = ϵb,1 + 2ϵf,1 Pbag,1 = Pb, 1 + 2Pf , 1 ϵbag,2 = 2ϵf,2 Pbag,2 = 2Pf , 2 (5.23)

From non-extensive bag model, we define the following terms:

ϵbag,1 = ϵb,1 + 2ϵf,1

Pbag,1 = Pb,1 + 2Pf,1

ϵbag,2 = 2ϵf,2

Pbag,2 = 2Pf,2

(5.24)
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C1 = m2ϵbag,2 + 2T 2ϵbag,1 (5.25)

C2 =

(
m2ϵbag,2 +

2

3
ϵbag,1T

2

)(
4T 2ϵbag,1 + 2m2T 2ϵbag,2

)
(5.26)

E1 =

(
m2ϵbag,2 +

2
3ϵbag,1T

2
)

(m2ϵbag,2 + 2T 2ϵbag,1)
(
4
3T

4ϵbag,1 + 2m2T 2ϵbag,2
) (5.27)

We now reformulate equations (5.20) and (5.21) using the following dimensionless variables:

ϵ̂ =
ϵ

ϵ0
v̂ =

v

cs

Where ϵ0 is the reference energy density and then by expanding the previous equations in power
of σ:

ϵ̂ = 1 + σϵ1 + σ2ϵ2 +O(σ3) v̂ = 1 + σv1 + σ2v2 +O(σ3)

By changing the variables from (x, t) to (ξ, τ) following that:

ξ = σ
1
2
(x− cst)

R
τ = σ

3
2
cst

R
(5.28)

R is a length parameter.

From the first order of σ, we will have:

c2s
∂v1
∂ξ

= ϵ0E1
∂ϵ1
∂ξ

C2
∂v1
∂ξ

= ϵ0C1
∂ϵ1
∂ξ

(5.29)

Now we reformulate and solve the last two equations to get the velocity of sound:

c2s =
C2
C1

E1 (5.30)

Depending on the second order of σ

∂ϵ1
∂τ

+
2ϵ0ϵ1ϵbag,1

3m4ϵ2bag,2 + 8m2T 2ϵbag,1ϵbag,2 + 4T 4ϵ2bag,1

∂ϵ1
∂ξ

= 0 (5.31)

The previous equation provides the expectation to the energy density of the first order perturbation.

By replacing (ξ − τ) with (x− t) we obtain the following:

∂ϵ̂1
∂t

+ cs
∂ϵ̂1
∂x

+
2csϵ0ϵbag,1ϵ̂1

3m4ϵ2bag,2 + 8m2T 2ϵbag,1ϵbag,2 + 4T 4ϵ2bag,1

∂ϵ̂1
∂x

= 0 (5.32)

At constant temperature, we will have the coefficient of nonlinear term as:

Bc =
2ϵ0ϵbag,1

3m4ϵ2bag,2 + 8m2T 2ϵbag,1ϵbag,2 + 4T 4ϵ2bag,1
(5.33)

So, eq. (5.32) will become:

∂ϵ1
∂τ

+Bcϵ1
∂ϵ1
∂ξ

= 0 (5.34)
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