mmmmmm

JOINT INSTITUTE FOR NUCLEAR RESEARCH
Veksler and Baldin laboratory of High Energy Physics

FINAL REPORT ON THE
INTEREST PROGRAMME

Artificial Intelligence in Industry-4.0

Supervisor:
Dr. Mihai Dima
Prof. Gheorghe Adam

Student:
Julio Maldonado, México

Universidad Autonoma de
Sinaloa (UAS)

Participation period:
May 24 — July 2, Wave 4

Dubna, 2021

Abstract

This report is based on the subjects reviewed during the course Artificial Intelligence in
Industry-4.0. The course covers some concepts of Industry 4.0, especially the concept
of artificial intelligence applied to the industry. The software is used in the ROOT
framework (a data analysis software developed by CERN). We reviewed artificial
intelligence, machine learning and deep learning concepts. The separate compilation
model project setup in a C++ language is implemented as examples of separate
compilation model projects. We reviewed the Multilayer Perceptron model (MLP) and
the implementation of two different Artificial Neural Networks (ANN) classifiers for RF
modulation. The report covers some basic theory of the above subjects and some

results using the presented classifiers.

Content

Introduction

Background

Project Goals

Scope of Work

Methods

Results

Conclusion

10

Introduction

On this course we reviewed some background, theory and practical examples of data

processing in the context of a practical application in science and industry.

We covered some concepts of Industry 4.0, especially the concept of separate
compilation model project setup in a C++ framework. Then we reviewed some artificial
intelligence, machine learning and deep learning concepts and the implementation of

two different Artificial Neural Networks (ANN) classifiers for RF modulation.

Background

In this part of the course we analyzed concepts of Industry 4.0, C++ language, and data

analysis framework ROOT developed by CERN for HEP subjects.

Industry 4.0

The term Industry 4.0 originated in 2011 at the Hanover Fair in Germany. It came as a
result of the Germany initiative to enhance competitiveness in the manufacturing
industry. The term refers to the technological evolution from embedded systems to
cyber-physical systems (CPS). It can also be referred to as a name for the current trend
of automation and data exchange in manufacturing technologies, including
cyber-physical systems, the Internet of things, cloud computing and cognitive

computing, and creating the smart factory. Some key concepts are described below: [1]

Decentralization: the ability of CPS within Smart Factories to make decisions on their

own.

Interoperability: the ability of CPS, humans and Smart Factories to connect and

communicate with each other via the Internet of Things and the internet of Services.

Modularity: flexible adaptation of Smart Factories for changing requirements of

individual modules.

Real-Time Capability: the capability to collect and analyze data and provide the

insights immediately.

Service Orientation: offering of services (of CPS. humans and Smart Factories) via the

Internet of Services.

Virtualization: a virtual copy of the Smart Factory which is created by linking sensor

data with virtual plant models and simulation models.

ROOT by CERN

Software framework developed by CERN for data analysis with C++ based language

(Python and R also supported). It can do some activities like: [1]

e Store data (up to range of 100 TB, trees/tuples structure).

| Contents of "/ROOT Files/event-vala-1.rooVEventTree;4/event"

A T0biect

Al s fHighPt
& fieasures[10] .ﬁ fMuons
3 Temperature s fTracks

e Visualize data (2D, 3D plots).

0 optimal order A

polynomial order

relative error

3 fClosestDistance iy fEventName
B flsvalia

A fTriggerBits

A fEvtHar i fPag

3 fLastTrack 3 MMatrix[4](4]

.ﬁ fMtrack % flvertex

3 Mype(20) R NWebHistogram
.] \\

g
g L
 — 250

T 20 !

0
Zimuth argl!
a

e Data analysis (TMultiLayerPerceptron, TFit Result, and other fit and classification

modules).

We used an example of Gauss Function Fit code.

C++ code

#include <TH1.h>
#include <TFile.h>

#include <TRandom.h>

int main() {

TH1F *histo = new TH1F("hgaus", "A Gauss Function",

TRandom rnd

for (int i = 0; i < 10000; ++i) {double x

histo->Fill (x)
TFile outfile ("gaus.root", "RECREATE")
histo->Write()
outfile.Close()
return @

A Gauss Function

100, -5.0, 5.0);

r

rnd.Gaus(1.5, 1.0) ;

)

450

i

400

350

300

250

200

150

100

50

_IIIIIIIII|IIII|IIII|IIII|IIII|IIII|IIIIIIIII

IIIIIIIIIIIIIIIII

x’ / ndf
Constant
Mean
Sigma

58.32/68
3979+ 4.9

1.505%0.010
0.9973 = 0.0071

IIIIIIIII|IIII|IIIIIIIII|

U = 0

1

2

3

4

e Run your own C++ codes.

// ROOT FITS

void myfit() {

// TGraph gr ("data.txt",
// TGraph grr ("test.txt",
// TGraph grrr("test.txt",

"ol %1g™)
"%lg %*1g %1g™)
"%1g %*1g %*1g %1g")

gstyle->setoptrit (1)
gSstyle->SetLinewidth(2)

fit.setParameter(0, 800.0)
fit.setrParameter(l, 1.6)
fit.setrParameter(2, 1350.0 h)

gr->Fit("fit")

gr->SetMarkercolor(4)
gr->SetMarkersize (1)
TGraphErrors* gr = new TGraphErrors("dx.txt") ; gr->setMarkerstyle(24)
Int_t N = gr->GetN() ; //gr->setTitle ("Dynamic decoupling")
Double_t x,y : gr->setTitle o)
for (Int_t i=0; i<N; i++) { .
gr->GetPoint (i, X, y) ; //gr->Getyaxis()->CenterTitle(true)
gr->SsetPointError(i, 0.01, 0.01) i} gr->Getyaxis()->setTitle ("P + offset")
//gr->GetxXaxis()->CenterTitle(true)
gr->Getxaxis()->SetTitle ("delay [usl™
TFL fit("fit", "([0]*exp(-x/[11D+[21)", 12, 462) ;
gr->Draw("AP")
fit.setparName (0, "amplitude") ; //gr->Draw("ALP")
fit.setParName (1, "T2" ;
fit.SetParName (2, "pedestal") ; }
. _ 22/ naf 396.4 /3
2 220{): o amplitude 8031+ 561.2
5 L
+ ~ T2 0.5131+0.01236
o 2100E- pedestal 1421+ 2.194
2000
1900
1800
1700
1600
1500
14{]{]_ I [L [[I L [[L I [L [I L L [[I
1 1.5 2 2.5

3
delay [us]

Project Goals

Learn how to use a separate-compilation model framework that allows us to integrate

various contributions into one project.

Learn a few of the advanced C++ features.

Learn the theory of Artificial Intelligence, Machine Learning, and the MLP perceptron.

Learn how to train and use a neural network.

Implement RF Modulation ANN classifiers

Scope of Work

Artificial Intelligence

Artificial Intelligence is a field of study that attempts to understand and build intelligent
entities. A rational approach is concerned with computational intelligence: the study of

the design of intelligent agents. [2]

An agent is just something that acts. Computer agents are expected to operate
autonomously, perceive their environment, persist over a prolonged time period, adapt
to change, and create and pursue goals. A rational agent is one that acts so as to

achieve the best expected outcome. [2]

Figure 1 shows the relation between artificial intelligence, machine learning and deep

learning. [1]

Machine Learning

Machine learning is the paradigm for ARTIFIBIA[|NTEI.|.|GEH[:E

. . A program that can sense, reason,
automated learning from data, using act, and adapt

computer algorithms.

The goal of learning is to respond

correctly to future data [3]. MACHIHE I.EARNIHE

Algorithms whose performance improve
as they are exposed to more data over time

Statistical techniques use

mathematical model f(*) and find DEEF
parameters of the model either LEARNING

Subset of machine learning in

analytically or numerically by using some which riudtiayered nearal
_ . o . . . networks learn from
optimization criteria. In machine learning, an vast amounts of data

approximating function f(z,w) is inferred

https://www.codecogs.com/eqnedit.php?latex=f(x)#0
https://www.codecogs.com/eqnedit.php?latex=f(x%2C%20%5Comega)#0

automatically from the given data without requiring a priori information about the

function. [3]
Supervised learning is the most powerful approach to obtain the approximation function
using a training data set with feature vectors (inputs) and the corresponding targets

(desired outputs). [3]

The training data set {yal‘}, where Y are the targets from the true function f(x),

encodes information about the input-output relationship to be learned.

Inputs Weights

Threshold (T)

[| Output (y)

%/ B

McCulloch-Pitts neuron

The Figure [1] above shows a neuron model (node). This node receives the information
as feature variables and each one of those has an interconnection characterized by a
weight whose values are learned during the training phase. Those values the

parameters of the model.

This node processes the information it receives with an activation or transformation
function and may have a bias or a threshold. The activation function is generally a

nonlinear function that allows for flexible modeling.

https://www.codecogs.com/eqnedit.php?latex=%5C%7By%2C%20x%20%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=y#0
https://www.codecogs.com/eqnedit.php?latex=f%20(x)#0

Neural Networks (NNs) are composed of several neurons arrayed on multiple layers. [3]

Deep Learning

Subset of machine learning in which multilayered Neural Networks learn from vast

amounts of data. [1]

Multilayer Neural Networks consist of an interconnected group of neurons arranged in
layers; each neuron processes the information it receives with an activation function,

then passes the result to the next layer of nodes. [3]

The first layer, known as the input layer, receives the feature variables, then it is

followed by one or more hidden layers of neurons. The last layer outputs the final

response of the network. NNs with one hidden Input Hidden Output
layer layer layer

layer are sufficient to model the posterior

probability to arbitrary accuracy. [3]

Defining a data set with d feature variables,

r = {x1, 72, ---fb’d}, the output of the network is,

O(x) = f(xw) = g (e + Z%-) — p(sx)

where 0j is the output from the hidden nodes: *i h; 0(x) = f(x,w)

bj =g <9j + Zwij.’Q')

The nonlinear activation function 9 is commonly taken as a sigmoid,

https://www.codecogs.com/eqnedit.php?latex=d#0
https://www.codecogs.com/eqnedit.php?latex=x%20%3D%20%5C%7Bx_1%20%2C%20x_2%2C%20...%20x_d%20%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=O(%5Cmathbf%7Bx%7D)%20%3D%20f(%5Cmathbf%7Bx%7D.%20%5Cmathbf%7B%5Comega%7D)%20%3D%20g%20%5Cleft(%20%5Ctheta%20%2B%20%5Csum_j%20%7B%5Comega_j%20b_j%7D%20%5Cright)%20%3D%20p(s%7C%5Cmathbf%7Bx%7D)#0
https://www.codecogs.com/eqnedit.php?latex=b_j#0
https://www.codecogs.com/eqnedit.php?latex=b_j%20%3D%20g%5Cleft(%5Ctheta_j%20%2B%20%5Csum_i%20%5Comega_%7Bij%7D%20x_i%20%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=g#0
https://www.codecogs.com/eqnedit.php?latex=g(a)%20%3D%20%5Cfrac%7B1%7D%7B1%20%2B%20e%5E%7B-a%7D%20%7D#0

Key concepts

Convolutions: can be thought of as “local feature detectors”. [1]

Vertical Line Detector Horizontal Line Detector Corner Detector
-1 1]-1 -1 |1-1 -1 -1 |-11|-1
-1 | 1]-1 1 1 1 -1 | 1 1
-1 1 -1 -1 1-1 | -1 -1 1 1

Training methods: training is the step of data analysis when we define the parameters

of our models and learn from our data. The learning process can be supervised or
unsupervised.

4 Type Dataset N
Supervised Data points have
Learning known outcome

Unsupervised Data points have
\ Learning unknown outcome

Data conditioning: it is important to remove outliers, uniformise data and norm data to

oc=1

[sp]
> @]

| Outlier””

positive symmetrical negative
skew skew

Data splitting: split data into two sets. Training set data used during the training

process. Test set data used to measure performance, simulating unseen data.

sepal length sepal width tal length | width
6.7 3.0 52 23| virginica
. . 56 21| virginica
Training Set > -
6.9 3.1 4.9 15 versicolor
44 29| 14 0.2 setosa
48 3.0 14 01 setosa
54 39 13 04 setosa
I 4.9 3.0 14 .
[- > 1 Testing Set I

https://www.codecogs.com/eqnedit.php?latex=%5Csigma%20%3D%201#0

Training step (supervised learning problem): [1]

e Collect a labeled dataset (features vectors and target output labels).

e Choose the model.

Gutlook

Qvercast

Yes

jfe] Yes

Hao Yes

Decision tree ‘Nearest neighbors
Human .
—a Bicycle Forward

% “Bicycle!” “Strawberry?”

il

Strawberry

@

Error
Backward

O

Labeled Data Model Evaluation Metric

Test step (supervised learning problem): [1]

e Choose an evaluation metric based on accuracy (how well predictions match true
values), and Mean Squared Error (average square distance between prediction and

true value).

e Choose an optimization method. Model configuration that gives the best
performance.

e Inference. Once the model is trained, we can provide new examples for predictions.

277777 ? i i

New Data Model Prediction

“Bicycle!”

e Pruning. How well the model fits the data.

N [

Overfit Well fit Underfit

Methods

We implement a separate-compilation model framework for classification of Radio
Frequency (RF) modulation. Then we learn the theory and implementation of a MLP

perceptron model (training and using a neural network) for RF Modulation.

RF modulation types [1] [4] [5]

Amplitude modulation (AM) is a modulation technique used in electronic
communication, most commonly for transmitting messages with a radio wave. In
amplitude modulation, the amplitude (signal strength) of the carrier wave is varied in

proportion to that of the message signal, such as an audio signal.

amplitude

Frequency modulation (FM) is the encoding of information in a carrier wave by varying
the instantaneous frequency of the wave. The technology is wused in

telecommunications, radio broadcasting, signal processing, and computing.

15

A AATIMA

il INJ A INJ [W
NTINTRNARTIIER A

time

amplitude

Phase modulation (PM) is a modulation pattern for conditioning communication signals
for transmission. It encodes a message signal as variations in the instantaneous phase

of a carrier wave.

Angle modulation is a class of carrier modulation that is used in telecommunications
transmission systems. The class comprises frequency modulation (FM) and phase
modulation (PM), and is based on altering the frequency or the phase, respectively, of a

carrier signal to encode the message signal.

Those are examples of analog modulation. In digital modulation, an analog carrier
signal is modulated by a discrete signal. Digital modulation methods can be considered
as digital-to-analog conversion and the corresponding demodulation or detection as
analog-to-digital conversion. The changes in the carrier signal are chosen from a finite

number of M alternative symbols (the modulation alphabet).

The most fundamental digital modulation techniques are based on keying:

PSK (phase-shift keying): a finite number of phases are used.

FSK (frequency-shift keying): a finite number of frequencies are used. The carrier
signal is periodically shifted between two frequencies that represent the two binary
digits.

ASK (amplitude-shift keying): a finite number of amplitudes are used.

QAM (quadrature amplitude modulation): a finite number of at least two phases and

at least two amplitudes are used.

RF parameter determination [1]

Defining the RF wave
y=p+ Asin(2nft + ¢)

Pedestal: find for average

; 2 fA
<y>:p+Aesin(27rfttl;tf+¢>sinc< W‘]; t

A

Ao = sinc(mfA)

Amplitude: find for second derivation
(0%y) = Ac(0°(sin))
Frequency: find for deviation
(y(y — yra)) = pAc((sin) — (singa)
+

AZ({sin*) — (sin - singa))

~ tkAA2sin(2m fKA) - 6 f

Phase: find for angle derivation

A
(y-cos(mft)) ~ 752n¢

The Figure below shows the distribution for different modulations obtaining best results

for frequency modulation distribution. [1]

=~ . 4
g 90000 | 3 x10
< - — M Lol —M -
3 C — <
> r - AM + — AM
< 80000 | [
; 1200
70000 I
60000 1000 |
50000 | so0 |
40000 I
: 600 |
30000 | _
C 400 |
20000 | I
C 200 |
10000 I
oL L P P O B | o L
0.08 006 -004 002 0 002 004 006 ped 0
s x102
N 50T
B 2
2 r — M S 1400 — M
80000 |- o Y | o
70000 £ 1200 |
60000 |- 1000 L -
50000 | L
C 800 |
40000 | i
C 600 |-
30000 | o
r 400 |
20000 | 3
10000 | 200 -
0 L i A B : - L . ——r’f::ﬂ: 1 :|j|:>ﬂﬁ— 1

0 . L © R L M-
-3 -2 -1 0 1 2 ¢ 9000 10000 11000 12000 13000 14000 £ [Hz]

MLP Perceptron

We implement the MLP perceptron model represent in the Figure below, [1]

wT

w

Bias xlo O

X1

X2 xzo O
Input Output
Layer Hidden Layer

Layer

The model is determine for an input layer (71, T2 and bias values), and default weights

w? for every connection and every element (data).

Input Layer Weights w'
bias X1 X2 (transposed)

PR B R B

R Y015 5 5|=
T 0 0
o B B
10 .
oto
4x3 éé)@ Hidden Nodes
Ix3

This model has a single hidden layer with three nodes. There is a connection of every
element (four in total) with each node (Node 1, 2, and 3, and Bias). The output of every
node, determine for the product of input values and weights is transformed with the

Sigmoid Function and then multiplied with the second weights.

https://www.codecogs.com/eqnedit.php?latex=x_1#0
https://www.codecogs.com/eqnedit.php?latex=x_2#0
https://www.codecogs.com/eqnedit.php?latex=w%5ET#0

Hidden Sigmoid _ Output sigmoid gueput
Layer Function Weights Layer Function
Bias ; & Sl | 1 .3 ; 1 0
Node1 _|.5 .5 .5 o gl = [me—as)_ _|1 o
Node 2 & 8 5 '4 '1 515 1 0
Node 3 ; T, e | ' . P i3 1 0
4 X 3 1 3 X 2 4 X Z 1
1 4+ e-(wx+b) 1 + e-(wx+h)

The output layer has two values for each element, one for every input variable. Using
the Sigmoid Function one more time, we transform the output in a way related with

original data values suitable for classification.

TMultiLayerPerceptron

We used the TMultiLayerPerceptron class of ROOT for implementing.

Public Member Functions

TMultiLayerPerceptron ()
Default constructor. More...

TMultiLayerPerceptron (const char *layout, const char *weight, TTree *data, TEventList *training,
TEventList *test, TNeuron::ENeuronType type=TNeuron::kSigmoid, const char *extF="", const
char *extD="")

The network is described by a simple string: The input/output layers are defined by giving the

branch names separated by comas. More..

Example: radial field of a magnet

This the the code using C++ creating a macro run with ROOT:

// read data

TTree* t = new TTree("treename", "description')

// (r,z)
// Br

Int_t nlines

cylindrical coordinates _
radial component of magnetic field

t->ReadFile("Br.dat","r:z:Br'")

First, we read data from a tree structure. The data contains cylindrical coordinates

values for magnetic fields (r, 2).

// MLP setup

TMultiLayerPerceptron *mlp =
new TMultilLayerPerceptron("@r,@z:10:10:10:@Br",
T

"Entry$%2" ,
"(Entry$+1)%2") ;
// 1/p = r, z (both normed: @)
// mid-Tlayers = 10+10+10 neurons
;; o/p = Br (normed: @)
// training set = even, Entry$%2 = true
// testing set = odd , (Entry$+1)%2 = true

Then we set up MLP using three hidden layers, every one of them with ten different
neurons. The output values are the magnetic strength component, B-. We also divide

the set between training set and testing set.

// set learn method

mlp->SetLearningMethod (TMultiLayerPerceptron: :kBFGS) ;

// kStochastic = default
// kBatch
kSteepestDescent
kRibierepolak
kFletcherReeves

kBFGS

NN
NN

Then the learning method is set, the Broyden, Fletcher, Goldfarb, and Shanno local

search optimization algorithm (BFGS).

https://www.codecogs.com/eqnedit.php?latex=r#0
https://www.codecogs.com/eqnedit.php?latex=z#0
https://www.codecogs.com/eqnedit.php?latex=B_r#0

The training set is filled with tree information.

// training

mip->Train(1000
"text,update=100") :

// 1000 events

// write text to console
// updates every 100 epochs

// fi1l Br(r, z)

Int_t nEvent = t- >GetEntr1eS()

b
Double_t* r = new Double_t [nEvent] :
Double_t* z — new Double_t [nEvent] :
Double_t* Br = new Double_t [nEvent] ;
Double_t* Br_cal = new Double_t [nEvent] :
Float_t rr ,

zz ,

Brr :
t->SetBranchAddress("r" , &rr) :
t->SetBranchAddress("z" , &zz) ;

J

t->SetBranchAddress("Br", &Brr)

for (Int_t i = 0; i < t->Getentries(); i++) {
t->GetEntry (1) :

r [i] = rr :
z [1] = zz ;
Br[i] = Brr -}

Input 0, 1, and output are set, and then mlp function is evaluated for each event (data).

// using the MLP

Double_t 1nputs[2];
for (Int_t i=0; i<nEvent; i++){

inputs[0] = r[i] ;
inputs[1l] = z[1] _ ;
Br_cal[i] = mIp->Evaluate(0, inputs) s }

Finally, the canvas and plots are defined to obtain images from original data and MLP
perceptron model.

TCanvas®* cl = new TCanvas('cl", "cl1", 500, 400) ;
cl->Divide(2,1) ;
cl->cd(1) :
TGraph2D* grl = new TGraph2D(nEvent, r, z, Br) ;
grl->SetTitle("original taken from data") ;
grl->SetNpx(200) ;
grl->SetNpy(200) ;
grl->braw("colz") ;

cl->cd(2) :
TGraph2D* gr2 = new TGraph2D("graphname"
"description”
nEvent
r
ya
Br_cal)
gr2->SetTitle("from ANN calculation")
gr2->SetNpx(200)
gr2->SetNpy(200)
gr2->Draw("colz")

R R R R A N]

original taken from data from ANN calculation

2 4 6 8 10 12 14 16 18 20 22 2 4 6 8 10 12 14 16 18 20 22

RF Modulation ANN classifier [1]

Using parameters determined with RF modulation types analysis, and using the MLP
model for classification, we can classify AM vs. FM modulation, and AM-LSB vs.
AM-USB modulation. The classification template was used for Higgs signal vs

background classification as is shown in the Figure below,

NN output

% Background (WW)

: Signal (Higgs)

10

0.2 0.4 0.6 0.8 1 1.2 1.4

o
|
ol
Pl
==

Results

Making several runs until 20% short of overtraining,

~ 1 = P 1 =
% 0.9 = Neural Node training for g 0.9 = Neural Node training for
< ~ E AM/FM discrimination 2 "~ B AM-LSB/AM-USB discrimination
208 & L 08 &
S 07 B S 0.7 =) -
A = "stohastic" ANN t
.S 0.6 H "linear—-BFGS" ANN training _QS 0.6 = stonastie ramning
S05 & 205 F over~training threshold
04 |- 0.4 | l
0.3 03 B
0.2 L 0.2 =
0.1 0.1 =
0: ‘ I‘ :\\\‘\\\‘\\\ll\ll\\\
0 20 40 0 200 400 600 800 1000
iteration nr. iteration nr.

The result could be obtained for both cases using the different sample data,

< < JU ¢ -
%140 - Neural Node evaluation for % - Xiﬂ‘fig go/‘fl;ffjl;‘;t’;m fqr i
S - AM / FM discrimination 2 . [Iscrimination
2120 2 E discrimination
- r " C threshold
3100 E AM é 20
3. = C
£ B FM & :
3 80 e 15 -
© C x -

60 ; discrimination threshold 10 &

40 E

- S
20 — C
0 : | | | | | ‘ | | 0 L

|
0 0.5 ANN o/p 0 I ANNo/p

Conclusion

We obtained good results for pattern recognition in the case of the magnetic fields data,
and we also obtained good results for the Higgs signal vs background classification as

well as for AM vs FM modulation, and for AM-LSB vs AM-USB modulation classification.

| learned some advanced aspects of C++ programming language. We also installed and
used the ROOT framework for data analysis working locally and using a cluster

connection.

| learned the theory and application of the Mult-Layer Perceptron model, which
demonstrated to be very powerful for pattern recognition and classification. Their
application in science and in a vast amount of industry sectors is undoubtedly important
nowadays. Those machine and deep learning methods and other aspects of the

Artificial Intelligence framework are the core of the “revolution” Industry 4.0.

References

[11 M. Dima and Gh. Adam. 2021. Artificial Intelligence in Industry-4.0 Course.

Laboratory of Information Technologies, JINR. Russia.

[2] S. Russell and P. Norvig. 2009. Artificial Intelligence: A Modern Approach (3rd. ed.).
Prentice Hall Press, USA.

[3] P. C. Bhat. 2011. Multivariate Analysis Methods in Particle Physics. Annual Review
of Nuclear and Particle Science, Volume 61, Pages 281-309.

[4] D. Brandon. 2010. Multichannel DDS Enables Phase-Coherent FSK Modulation.
Analog Dialogue, Volume 44, Number 4.

[5] B. Gilbert. 2008. Considering Multipliers (Part 1). Analog Dialogue, Volume 42,
Number 4.

