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Introduction

We are under the showers of cosmic RADIATION
radiation which includes all types of
radiations. There are artificial sources of
radiation produced by specific human
activity.

Inspite of Its consequencies it has many
beneficial applications ranging from
power generation to uses In medicine,
Industry, agriculture and many more.




Introduction

This radiation Is invisible and is omnipresent. Its
effect has a dire consequences. It cannot be felt,
smelt, seen, heard or tasted.

However, with the use of appropriate device, It can
be monitored.

Radiation monitoring involves the measurement of
radiation  doses, detection of radionuclide
contamination, control of exposure to radiation or
radioactive substances, and the analysis of the results
from aforementioned activities.




Radiation Dosimetry

Radiation dosimetry is the measurement, calculation and assessment of radiation
dose received by a body as a result of exposure to ionizing radiation. They are
measured by dosimeters. These dosimeters can measure both delayed and real time
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Experimental setup and scintillation detector

Technology has made it possible to detect and measure radiation as part of
monitoring it. In this project, scintillation detectors like Nal and BGO were used.
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Figure.3. Experimental set-up



Advantages and disadvantages of the scintillation
detector.

A scintillation counter is an instrument for detecting and measuring ionizing radiation by using the excitation effect
of incident radiation on a scintillating material, and detecting the resultant light pulses.

Advantages

 The ability to accommodate samples of any type, including liquids, solids, suspensions and gels.
» The ease of sample preparation.

* Much higher counting efficiencies particularly for low energy p-emitters

. 'tl)'he abilit tot count separately different isotopes in the same sample, which means dual labelling experiments can
e carried ou

« Scintillation counters are highly automated, hundreds of samples can be counted automatically
Disadvantages

» At the high voltages applied to the photomultiplier, electronic events occur in the system that are independent of
radioactivity but contribute to a high background count.

» The cost per sample of scintillation counting

» The use of pulse hei%ht analyser can be set so as to reg'ect electronically, most of the noise pulses that are of low
ende_rgy.t'_l'hg[e disadvantage hefe is that this also rejects the low energy puilses resulting from low energy
radioactivity



Task 1: The relationship between Resolution and Applied
voltage for BGO detector
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Figure.4. The relation between the resolution and
applied voltage for BGO detector



Task 1.2 Energy calibration for BGO

Equation of calibration:
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Task 2.1 The relation between resolution and
applied voltage for Nal detector
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Task 2.2 Energy calibration for Nal

Equation of calibration:
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Task 2.3 ldentification of unknown sources
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Task 3 Attenuation coefficient

Attenuation coefficient describes the fraction of a beam that
IS absorbed or scattered per unit thickness of the absorber.

[ = IO e _Nx_
where u 1s attenuation coefficient
[ - -is the exposure rate with the shield in place
| 0 -1s the exposure rate without the shield
X - 1s the thickness of the shield

The equation assumes a narrow beam of radiation
penetrating a thin shield (a situation usually referred to as
"'good geometry™).
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Task 3 Attenuation coefficient
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Task 3: Attenuation coefficient
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Figure.13. Determination of attenuation coefficient for Al Figure.14. Determination of attenuation coefficient for Cu



Task 4: SRIM Simulation
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Task 4: Alpha Range in air
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Figure.17. The range of alpha particles



Task 5 Pixel detectors

The pixel detector has a sensor
connected to electronic chip by flip chip
bonding with solder bump. It has a high
resolution good for registering different
types of radiation. Advance pixel
detector is like a digital camera.

It consists of 3 parts:
¢ Sensor (Si)
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Task 5: Pixel detectors

An alpha source Is brought near the pixel detector. The number of alpha particles decreases as the
source is moved away from the detector as shown below:

Determination the range of a-particles with (Am-241) energy about 4 MeV in air using pixel detector.
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Figure.21. Absorption of alpha particle energy in the air at 2 cm Figure.22. Absorption of alpha particle energy in the air at 2.5 cm



Task 5: Pixel detectors

Determination the range of a-particles with (Am-241) energy about 4 MeV in air using pixel detector.
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Conclusion

This project has given me a fair understanding of radiation protection
and safety. | have come to appreciate the fact that radiation can be
measured, detected and shielded.

Basic skills in measuring and interperating results from BGO and Nal
scintillation detectors were obtained.

Skills for identifying an unknown source was also obtained.
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