

JOINT INSTITUTE FOR NUCLEAR RESEARCH Flerov Laboratory of Nuclear Reactions

FINAL REPORT ON THE INTEREST PROGRAMME

Implementation of an automation system for PPAC detectors with data visualization and analysis

Supervisor:

Mr Patryk Szymkiewicz **Student:** Sebastian Owarzany, Poland AGH University of Science and Technology **Participation period:** 24 Marc 20 July 2024

24 May - 02 July, 2021

Dubna, 2021

Abstract

Parallel plate avalanche counters (PPACs) detectors in our configuration are used to diagnose the beam position. These detectors was developed over 50 years ago. Their main advantages: cost effective design, good position and timing resolution. Main features of the PPAC detector is that we don't need a lot of substance in comparison with other kinds of gas detectors.

In this report we develop gas line and LabVIEW exe application for control and monitoring two parallel connected PPACs detector which will be placed in ACCULINNA separator. For this purpose we use a MKS pressure controller, CAEN High Voltage Power Supplies, PFEIFFER gauge controller. After internship our detector system is to be installed on the ACCULINNA separator, and our software is to become part of the ACCULINNA software.

Table of Contents

Abstract	2
Introduction	4
Project goals:	4
Scope of work	5
Methods:	5
Gas line:	6
State machine:	7
Used device:	10
Block diagram of software:	12
Experimental stand:	22
Results	23
Conclusion	23
References	24

Introduction

On the ACCULINNA-2 separator is being implemented a system of PPAC (Parallel Plate Avalanche Counter) position-sensitive detectors. Functions of the detectors is to measure a beam's profile and determine its focal point. For the proper operation of the detectors, it is necessary to guarantee the stability of a flow, pressure and power supply of the devices. Changing any of these crucial parameters makes the collected data unreliable. For this purpose, utmost attention is paid to creating a system providing the stability of the detectors operation. During the internship, a control system will be developed (for the already built station) to control the detectors parameters. The PID regulator will also be optimized to make the system resistant to an external interference. Finally, the detectors will be calibrated and prepared to a future application.

Before I was start internship my supervisor create a system containing one PPAC detector, that means my first task was be design system with two detectors. It was necessary to consider the ACCULINNA-2's and detectors' condition of work and requirements while designing an external gas line[1]:

Working gas: C_3F_8 or C_4H_{10} . Flow rate¹: 3 to 6 SCCM (standard cubic centimeters per minute). Gas pressure: 10 Torr. Voltage: 700-900 V.

¹ for one detector

Project goals:

To develop a system to manage the work of two PPAC position-sensitive detectors.

Scope of work

Familiarization with the experimental station for PPAC gas detectors.

The software for operating with PPAC detectors will be developed.

The created software will control the gas flow, pressure sensors and supplied voltage, and the collected data will be visualized.

Methods:

The first step was to familiarize yourself with the measurement system and understand the principles of operation of PPAC detectors. For this purpose, a series of discussions with the supervisor and the materials concerning the principles of operation of the detector were introduced.

The second step was to design the gas line needed for the proper operation of the detectors based on the previously acquired knowledge. As we can see in the figure below, the line was designed in the form of a puzzle in which each printed element corresponded to the real elements of the line.

The key feature of designing the gas system is to provide safety and stability of a beamline's installation, especially for turbopumps.

Gas line:

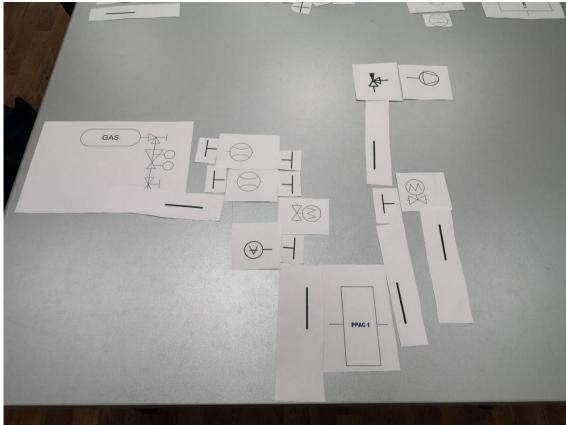


Figure 1. Gas line with one PPAC.

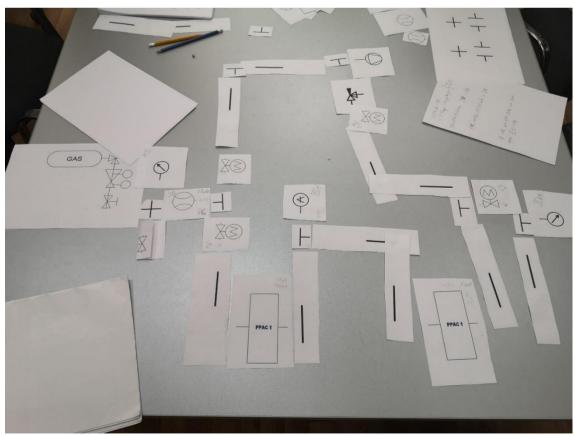


Figure 2. Gas line with two PPACs – our solution.

State machine:

In this step, we developed a state machine. Emergency scenarios, like a power failure or crucial damage of the detector, were also included in the machine state.

DEVICES					0 -	IDLE			1.1 - V	ENTILAT	ION N	0.1	1.2 FU	LFILLED	WITH C	SAS	1.3 - \	/ENTILA		NO. 2	1.4 FI	JLFILLED	WITH	GAS		
			NORMAL	CONDITIONS	P2	PC	P3	P4	POWER UP	P2	PC	P3	P4	P2	PC	P3	P4	P2	PC	P3	P4	P2	PC	P3	P4	
			STATE	[MBAR or SCCM]	1000 1000 1000 1000		FOWER OF	1000 \2 0	1000	1000	1000	0 7 3000	1000	1000	1000	3000 \/ 0	1000	1000	1000	0 7 3000	1000	1000	1000			
VALVE ON A BOTTLE V0		-			CL	OSE	1	CLOSE		CLOS	6E		OPEN (2)					CLOS	E (1)		OPEN (2)					
Bellows sealed valves	V1 -				CLOSE				CLOSE	OPEN (1)				(CLOSE (1)				OPEN	I (2)			CLOSE (1)			
ELECTROPNEUMATIC	V2		NC				.OSE		CLOSE		CLOS				CLOS				CLO				CLO			
VALVES	V3 V4		NC NO		CLOSE OPEN			OPEN CLOSE		OPEN CLOS			OPEN CLOSE SP				OPEN CLOSE									
DOSING VALVE			-				OSE		SP (1)	SP								SF				SP				
M.F.C			NC		CLOSE				CLOSE		CLOS	E				CLO	1.000 C			CLOSE SP						
P.C.	1	1	NC				OSE		SP		SP						SF									
MKS RELAYS	A1: P3	R1	NO	P3: < 12	0				0		0				0				С)			0			
	A1.13	R2	NO	P3: > 8			0		•		•				•			•				1.000	•			
	B1: MFC	R5	NO	SET			0		•		•				•				C)			•	1		
	D1. IVITC	R6	NO	SET			0		•		•				•				•)			•	1		
	C1 : PC	R9	NO	PC: < 25	0				0	0				0					С)			0			
	CITC	R10	NO	SET			0		•	•				•					•	•		•				
	CH1: P2	R1	NC (3-2)	P2: > 2500			•		0		0			C	\rightarrow	•			• -	<i>></i> 0)	(>⇒	•		
		R1	NO (3-4)	P2: < 2500			0		•	•				$\bullet \rightarrow \circ$				(\rightarrow	•			$\bullet \rightarrow \circ$			
TPG362 RELAYS		R2	NC (6-5)	LOW P4: < 1E-4; HIGH P4: >1.5E-1			•		•		•				•				•)			•	1		
	CH2: P4	R3	NO (10-11)	P4: < 1E-5			0		0		0				0				С)			0			
		R4	NO (13-14)	LOW P4: < 5E-5; HIGH P4: >1.5E-1			0		0		0			0					С				0			
- 1	H	,	OFF	MKS R1 & MKS R2		(DFF		OFF		OFF				OFF				OF	F			OF	F		
CAEN	Interl	ock	NO	& MKS R5 & MKS R6			0		0	0				0					С)			0			
SWITCH (WORK)			DEACTIVATED	TPG362 R1 & TPG R3 & MKS R9 & MKS R10		DEAC	TIVATED		DEACTIVATED	DEACTIVATED				C	Ì	DEACTIN	VATED		DEACTIVATED							

Figure 3. State machine 1/3.

2.1	VENTING OF		AMBER -				OF MAIN				G OF MAIN	3.1 PE	RMISS	ION	TO START		3.2 GAS	FLOW ON			3.3	HV	ON	Т	EMERGENCY SCENARIO					
P2	STARTING OFF CHAMBER - BYPASS CLC P2 PC P3 P4 P2 PC P3 P4			ASS CLOSED P4	P2		ER - C C P3	ONNECTION P4	P2				P2	P2 PC P3 P4					P2	P4										
3000	1000 ⊻ 0	1000 \\ 0	1000 ∖J 1E-4	3000			1E-4 ≥ 5E- 5	3000		0 0	5E-5 NI 1E-	3000			10.5 \		PC	P3 0 7 10	P4 <1e-5							PC 10 ⊻ 0	P3	1E-57 1.5E-1		
	0	PEN		OPEN				OPEN				OPEN					OPEN				OPEN					OPEN				
	CL	.OSE			(CLOS	SE			CLC	SE		CL	os	ε		CLO	OSE		CLOSE					CLOSE					
		LOSE				CLOS				CLC				OSE				PEN				OPE					LOSE			
		DPEN LOSE				CLOS				CLC OP				OSE PEN				OSE PEN		11		OPE		+			LOSE OPEN			
		SP		SP				SP				SP					SP					SP			SP					
		LOSE				CLOS				CLC		CLOSE					CLOSE					CLOSE								
-		SP				SP				SI				SP			SP					CLOSE								
	0 -	$\rightarrow \bullet$				•				•				•			•					0								
	• > 0					0		0			0					•					0									
		•				•				•			•			•				•							0			
		•				•		•						•				•					0							
	0 -	$\rightarrow \bullet$				•			•				•			•					0									
		•		•				•			(•			•					0										
		•				•			•				•			•					•									
		0				0				C)		(0			0							0						
		•				0)		(0						0					•							
		0				0				C)			•				•				•					0			
		0				0			•		•						•					0								
OFF OFF					OF	F	OFF					ON					OFF													
		0				0)		(0			•					0										
	DEAC	TIVATED			DE/	ACTIV	ATED		DE	EACTI	VATED		ACTI	VAT	red		ACTIN	/ATED			ACT	riva:	TED			DEAC	TIVATED			

Figure 4. State machine 2/3.

!EME		CENARI PAC'S FO	O! BREAKING		4.1A SW	ITCH OFF		4.1B		OFF WITH SSURE	RISING		4.2 0	PEN BYPASS		Γ	5.1 TURN	OFF GA	AS	5.2	Т	5.3 READY TO OPEN (POWER OFF)							
P2	PC	P3	P4	P2	PC	P3	P4	P2	PC	P3	P4	P2	PC	P3	P4	P	2 PC	P3	P4	P2	PC	P3	P4	P		P3	P4		
3000	10 10 1	0 لا 10	1E-5겨 (~5E-3 뇌 Ultimate)	3000	10 \2 0	10 10 0	<1E-5	3000	10 \2 0	10 \2 0	1E-57 1.5E-1	3000	0 7 1000	0 7 1000	1.5E-17 1000	30	1000	1000	1000	3000 🖌 0	1000	1000	1000	0 0	1000	1000	1000		
OPEN					OP	PEN		OPEN					C		CLOS	E (1)		CLOSE					CLOSE						
	C	CLOSE			CLO	DSE			CL	OSE			c	LOSE			CLO	DSE		OPEN (1)					CLOSE (3)				
	PERIOD		OPEN			OSE				OSE				CLOSE				DSE			CLOS					LOSE			
		CLOSE OPEN		inter the second	2010-201	OSE PEN				OSE PEN				OPEN CLOSE				EN DSE			OPE CLOS	200		+		PEN			
		SP		7		iP				SP		SP				SP					SP				CLC	.)			
		CLOSE		(II		OSE				OSE			1	CLOSE			CLO		CLOS				CLOSE						
		SP		1	S	SP				SP				SP			S	P		SP					CLOSE				
		•				•		1		•				$\rightarrow \circ$			()		0					0				
		0			• -	$\rightarrow 0$		$\bullet \rightarrow \circ$					0					•					0						
		•				•		•						•)		•					0				
		•				•		•						•						•					0				
		•				•		•					•		()		•					0						
		•			•					•		•						•		•					0				
		•				D		•)		• > 0					0						
		0			(C				0		0					()		0						•			
		0			(C				0				•				•			•					•			
	• →(0 -	→ •)			•				0				0		-	()			0					0			
	0 •						•				0			(0					0									
		OFF			ON -	→ OFF			ON	→ OFF				OFF			0	FF			OFF	-			3	OFF			
		0			• -	→ 0			• -	$\rightarrow 0$		0					()					0						
DEACTIVATED → (ACTIVATED →DEACTIVATED) ACTIVATED				/ATED			DEAC	TIVATED		DEACTIVATED					DEACT	VATED		D	ATED		DEACTIVATED								

Figure 5. State machine 3/3.

The state machine was created in a spreadsheet, which allowed parallel work for several people and clearly presented the possible states.

After creating the state machine, we read technical documentation of all used devices. Next, we selected the proper commands and write a simple application to initiate connection with all devices.

Used device:

Figure 6. The HV power supply used in PPACs' setup.

Figure 7. The I/O NI DAQ used in PPACs' setup.

Figure 8. The PFEIFFER gauge controller used in PPACs' setup.

Figure 9. The MKS vacuum system controller used in PPACs' setup.

Then we start writing the application. At the begin we linked all devices communication protocols to one LabVIEW code. Then, we discuss about block diagram of our program. At the end all functionalities have been implemented into the LabVIEW environment.

Block diagram of software:

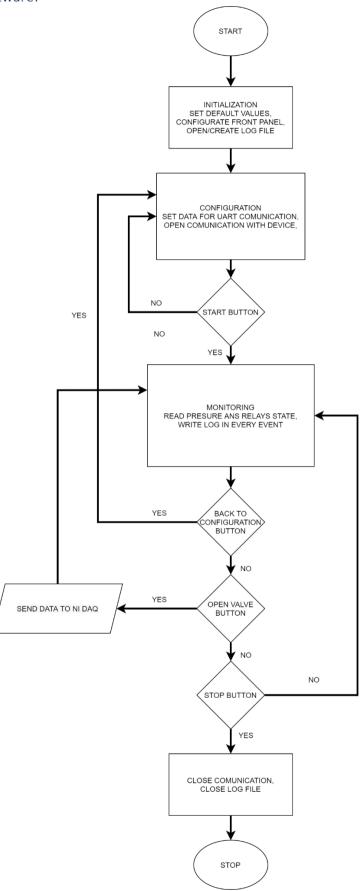


Figure 10. Block diagram of designed software.

The individual parts of the finished code are as follows: *Initialization*:

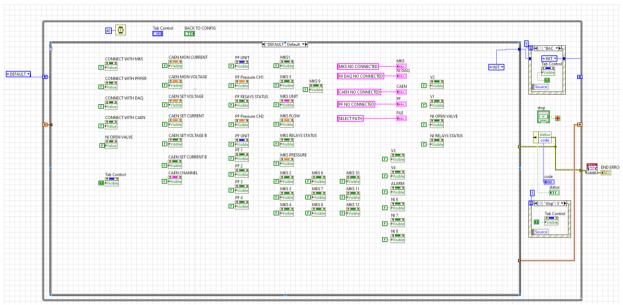


Figure 11. IDLE.

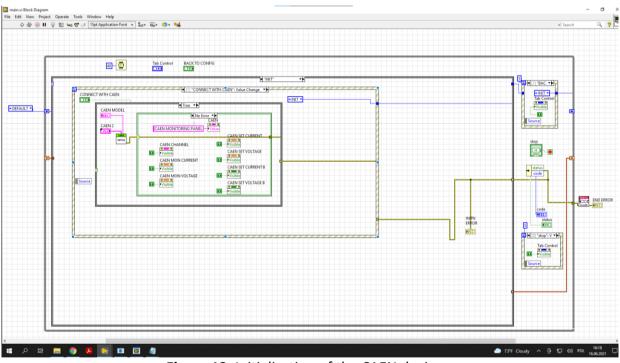


Figure 12. Initialization of the CAEN device.

Figure 13. Initialization of the NI DAQ.

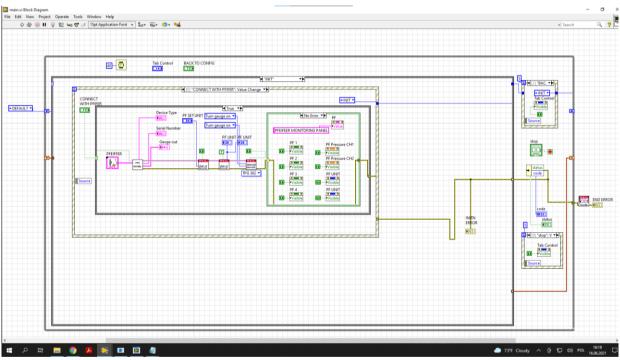


Figure 14. Initialization of the PFEIFFER device.

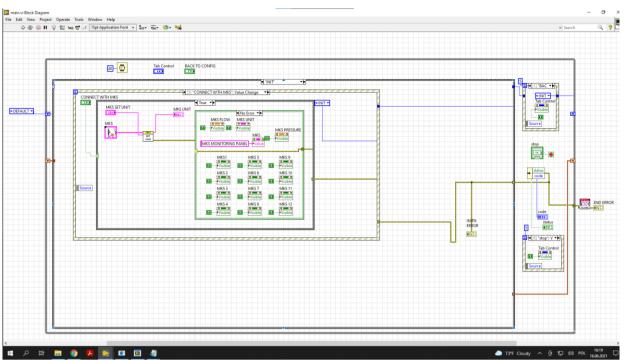


Figure 15. Initialization of the MKS controller.

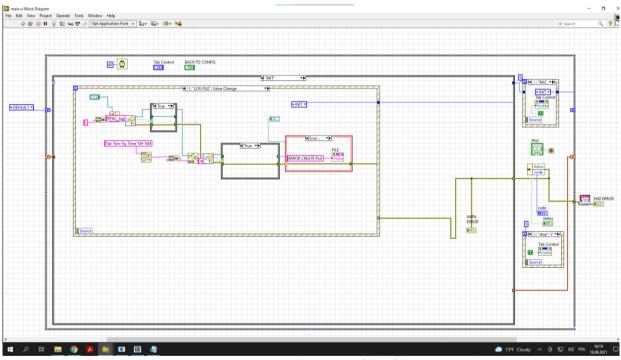


Figure 16. Initialization of log file.

Monitoring:

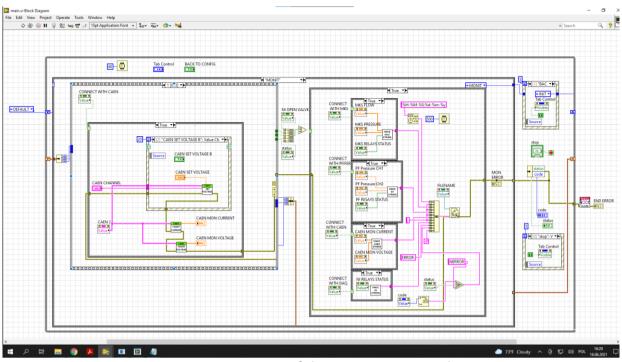


Figure 17. Monitoring of the CAEN power supplier.

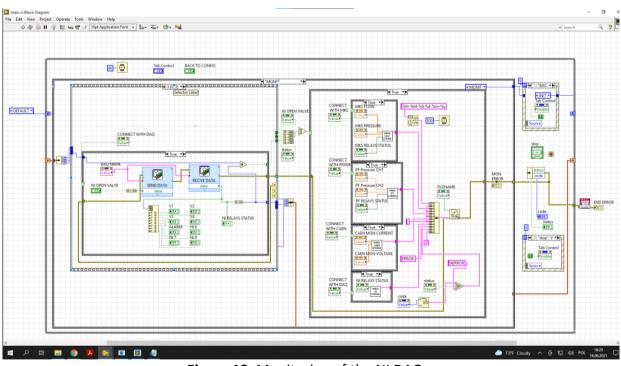


Figure 18. Monitoring of the NI DAQ.

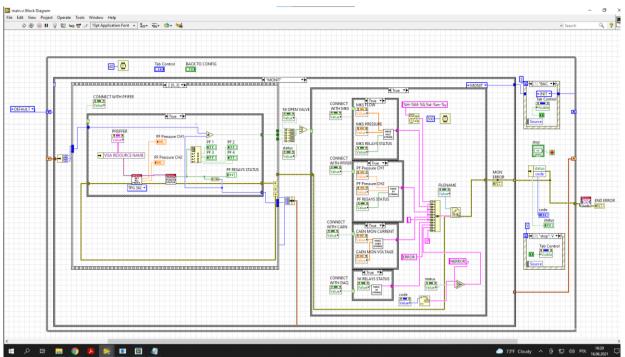


Figure 19. Monitoring of the PFEIFFER controller.

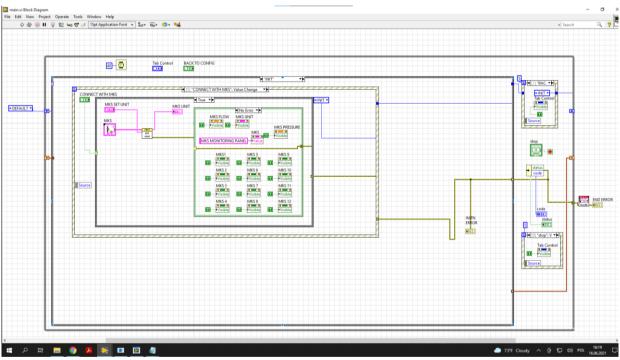
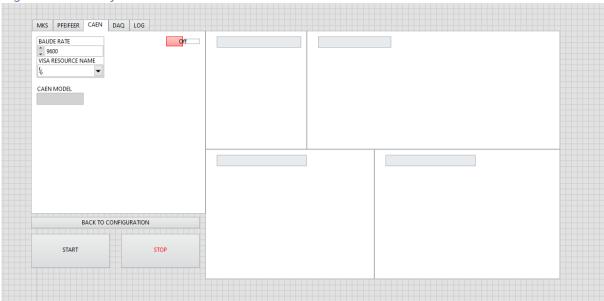
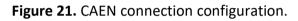
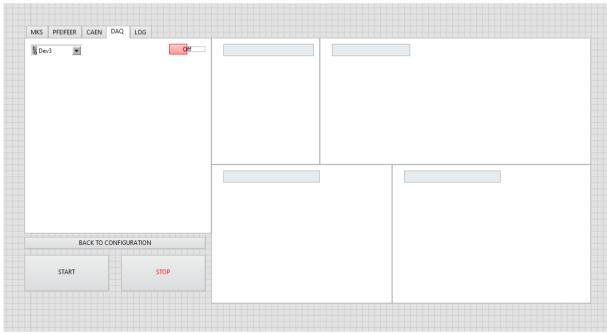
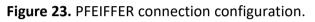
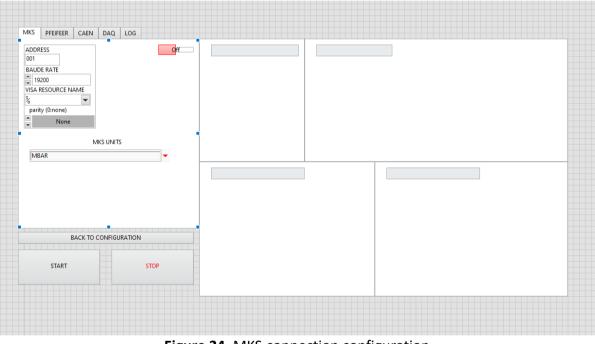
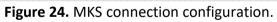
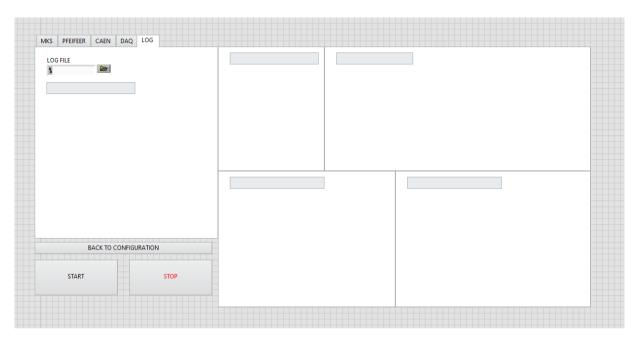




Figure 20. Monitoring of the MKS controller.

Program user interface:


Figure 22. NI DAQ connection configuration.

MKS PFEIFEER CAEN DAQ LOG		
BAUDE RATE 9600 VISA RESOURCE NAME % PF SET UNIT \$ mbar / bar		
Device Type Serial Number		
Gauge out BACK TO CONFIGURATION		
START STOP		

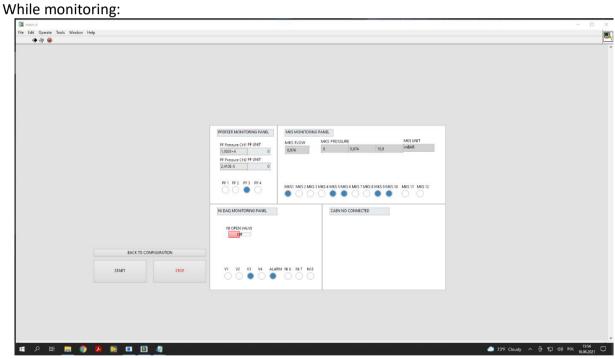


Figure 26. Front panel during monitoring.

The structure of the outgoing data in the form of a log:

Figure 27. Structure of the outgoing data.

Log will be saved in every switch of state.

The last step was conducting a full test. The prototype stand with the developed app was switched on and all work scenarios were checked.

Experimental stand:

Figure 28. Prototype gas line.

In prototype gas line every part of program working properly.

Results

A part of the project, an application was created in the LabVIEW environment from which we can monitor the condition of our system and control the start of detectors' work.

Conclusion

During the internship I could use a lot of skills gained in University. Beneficial was knowledge of the LabVIEW environment, which I gained at CLAD course I participated in. The biggest problems were understanding the principles of operation of the gas installation and proper communication with all devices.

Working in the LabVIEW environment was simple. For me the main advantages of work in this environment are:

- low entry level,
- compatibility with all devices,
- easy to create graphic user interface and exe application,

• user-friendly for non-programmer people,

The main disadvantages are:

- hard to keep clean code,
- you need to possess an advance knowledge of LabVIEW for data flow optimization,
- software is expensive.

References

 [1] Charles Akers,* Kwang Bok Lee, Young Jin Kim, Eun Hee Kim, Young Kwan Kwon, Hyo Sang Lee, Jun Young Moon, Jin Hyung Park, Min Sang Ryu, Taeksu Shin and Satou Yoshiteru Construction and Performance Test of Prototype Parallel Plate Avalanche Counters at RAON 2017