Qubit experiments
 QuLogic
 Quantum Algorithm
 Conclusions

 0
 0
 0
 0
 0

 00
 0
 0
 0
 0

 00
 0
 0
 0
 0

JOINT INSTITUTE FOR NUCLEAR RESEARCH Meshcheryakov Laboratory of Information Technologies

FINAL REPORT ON THE INTEREST PROGRAMME Introduction to Quantum Computing

Student: Iuliana-Mariana Vladisavlevici^{1, 2} Supervisors: Dr. Mihai Dima & Prof. Gheorghe Adam

¹Faculty of Physics, West University of Timisoara, Romania

²CELIA, University of Bordeaux, Talence, France → (= → (= →) (→)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Table of Contents

Spin Quantum Mechanics

Qubit experiments

- Frequency Rabi
- 01 discriminator
- T_1 experiment Ramsey experiment Hanh Echo experiment Dynamical Decoupling

QuLogic

Quantum Algorithm

Conclusions

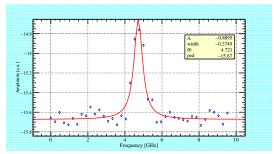
- Particles exists in a superposition of states
- The state vector is given by Schrodinger equation:

$$i\hbar \frac{\partial}{\partial t}\psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) + V(x)\psi(x,t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- The Stern-Gerlach experiment showed that a particle posses intrinsic angular momentum known as spin
- Electron spin is quantised \uparrow or \downarrow
- All 2-level systems are equivalent to spin

Qubit frequency scan


Ipothesis: consider a qubit which has two states: a ground state |0> and a excited state |1>.

Problem: which is the resonant frequency of the qubit?

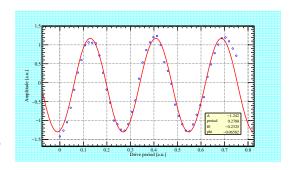
Steps:

- run experiment on IBM Quantum Lab
- get data and plot with ROOT
- fit function:

 $\frac{A}{\pi} \cdot \frac{B}{(x-C)^2 + B^2} + D$

• get f0 (C) Figure 1: Pulse amplitude vs qubit frequency The resonant frequency of the qubit is: 4.721 GHz.

Rabi qubit excitation


Ipothesis: Consider the same qubit with the two states. The transition from one state to another is made by a π rotation.

Problem: which is the amplitude of the π pulse?

Steps:

- run experiment on IBM Quantum Lab
- get data and plot with ROOT
- fit function:

$$A \cdot \cos\left(\frac{2\pi x}{B} - C\right) + D$$

• get $A_{\pi} = C/2$ Figure 2: Pulse amplitude vs drive period The amplitude of the π pulse is: 0.11625.

Discriminating 0 vs 1

Ipothesis: We consider a qubit in a superposition of |0> and |1> states and we apply a π pulse.

Problem: in which states the qubit is?

- run experiment on IBM Quantum Lab
- get data and plot with ROOT
- get mean values for each state: |0 >: (-15.51, -5.72)

|1>: (-13.13, -11.71)

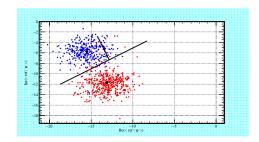


Figure 3: Current vs charge for |0> (blue data) and |1> (red data) qubit states

Discriminating 0 vs 1

- delimitation of the clusters:
 - separating line: $y_1 = 0.741x + 2.191$
 - perpendicular line:
 - $y_2 = -3.186x + 48.29$
- project the points on y_1y_2
- fit function: $A \cdot exp \frac{-(x-B)^2}{2 \cdot C^2}$
- fit parameters:
 - ground state: 14.1356; -3.219; 1.008
 - excited state: 18.1241; 1.242 ;1.016

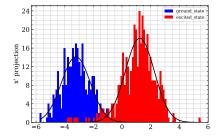


Figure 4: (x, y) projected on the perpendicular lines

The qubit is in state 0.

Qubit relaxation time T_1

Ipothesis: We consider a qubit in the state |1 >. We define T_1 the qubit's relaxation time from state |1 > to state |0 >. **Problem**: which is the qubit relaxation time? Steps:

- run experiment on IBM Quantum Lab
- get data and plot with ROOT
- fit function:

$$A \cdot \exp\left(\frac{-x}{B}\right) + C$$

 $\left[\begin{array}{c} \mathbf{v} \\ \mathbf{v} \\$

• get $T_1 = B$ **Figure 5:** Pulse amplitude vs time delay **The qubit relaxation time is 169.5\mus**.

Ramsey experiment

Ipothesis: We consider a qubit with two states $|0\rangle$ and $|1\rangle$ and we apply two $\pi/2$ pulses with a time delay between them. **Problem**: which is the qubit resonant frequency? Steps:

- run experiment on IBM Quantum Lab
- get data and plot with ROOT
- fit function:

get

 $A \cdot \cos(2\pi B \cdot x - B) + C$

 $f_0 = f_{0,est} + B[GHz]$

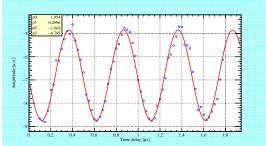


Figure 6: Pulse amplitude vs time delay

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶ → 国

The qubit resonant frequency is 4.7214996 GHz.

Hanh Echo experiment

<code>lpothesis:</code> We consider a qubit in a Ramsey experiment, but we add a π pulse between the two $\pi/2$ pulses.

Problem: which is the decay time T_2 ?

Steps:

- run experiment on IBM Quantum Lab
- get data and plot with ROOT
- fit function:

$$A \cdot \exp\left(\frac{-x}{B}\right) + C$$

• get $T_2 = B$

The qubit relaxation time is $192.7 \mu s$.

Figure 7:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dynamical Decoupling

Ipothesis: We consider the Hanh Echo experiment, but we apply 6 π pulses between the two pi/2 pulses.

Problem: which is the decay time T_{2DD} ?

Steps:

- run experiment on IBM Quantum Lab
- get data and plot with ROOT
- fit function:

$$A \cdot \exp\left(\frac{-x}{B}\right) + C$$

421. Time delay fus

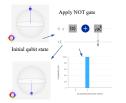

• get $T_2 = B$ The dynamical decoupling time is 421.3 μs . ・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Figure 8:

ж

QuLogic

Final qubit state

Flip state to 12- Job run on simulator_stabilizer Job run on simulator_stabilizer

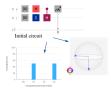


Figure 9: NOT gate

Figure 10: Hadamard gate

Figure 11: Entangled states

æ

<ロト <回ト < 注ト < 注ト

Qubit experiments 0 0 00

QuLogic 0 Quantum Algorithm

Conclusions 0

Quantum Algorithm

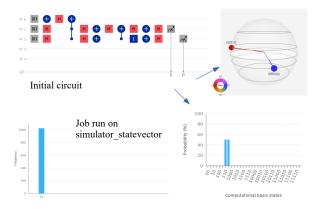


Figure 12: Grover algorithm D + (B) (E) (E) (E) (C)

Conclusions

- The basics concepts of Quantum Mechanics are the pillars of the Quantum Computing theory, all 2-levels quantum systems being equivalent to electron spin.
- The quantum representation of the classical bit is defined as qubit. We studied the qubit characteristics with the IBM Quantum Lab.
- We could manipulate the qubit and change its states via Quantum Gates. In the IBM Quantum Composer we created superposition of states and implemented the Grover algorithm.
- I believe this course was a very smooth and educative introduction into the topic and I enjoyed to work with the IBM platform.