INTEREST - INTErnational Remote Student Training Wave 3

Radiation Protection and the Safety of the Radiation Sources

08 February - 19 March 2021

Aydan Khaligzadeh-Azerbaijan

Supervisor: Prof.Dr. Said AbouElazm

TASK 1 Dependence of resolution on applied voltage for BGO detector

Dependence of resolution on applied voltage for BGO detector

TASK 2 The calibration spectra for BGO detector

BGO-Co60+Cs137-2000V

23-Co60+Cs137_side_BGo_ch4_2000V_5mV_T24-37_0.7Gss_599ns_17122019_0ch

Gaus FIT -first peak Cs137 energy spectra=0,662MeV Mean=6,4685

23-Co60+Cs137_side_BGo_ch4_2000V_5mV_T24-37_0.7Gss_599ns_17122019_0ch

Gaus FIT -second peak Co60 energy spectra=1,17MeV and 1,33MeV The average is =1,25MeV Mean=12,275

23-Co60+Cs137_side_BGo_ch4_2000V_5mV_T24-37_0.7Gss_599ns_17122019_0ch

Gaus FIT -third peak Co60 energy spectra (last peak)=2,5MeV Mean=24,3845

The calibration spectra for BGO detector

Part 1-Dependence of resolution on applied voltage for NaI

For first peak (900V) Resolution=(sigma/mean)*2,35=0,0565

for Second peak (900V) Resolution=(sigma/mean)*2,35=0,0539

For first peak (1000V) Resolution=(sigma/mean)*2,35=0,0554

for Second peak (1000V) Resolution=(sigma/mean)*2,35=0,0499

For first peak (1100V) Resolution=(sigma/mean)*2,35=0,0513

for Second peak (1100V) Resolution=(sigma/mean)*2,35=0,0459

For first peak (1200V) Resolution=(sigma/mean)*2,35=0,0468

for Second peak (1200V) Resolution=(sigma/mean)*2,35=0,0411

For first peak (1300V) Resolution=(sigma/mean)*2,35=0,0431

for Second peak (1300V) Resolution=(sigma/mean)*2,35=0,0391

Dependence of resolution on applied voltage for NaI

TASK 2 The calibration spectra for NaI

Co60+Cs137-NaI-800V

Gaus FIT –first peak Cs137 energy spectra=0,662MeV Mean=7,696

Gaus FIT –second peak Co60 energy spectra=1,25MeV Mean=12,63

Gaus FIT –third peak Co60 energy spectra=1,33MeV Mean=14,149

Gaus FIT –fourth peak Co60 energy spectra (last peak)=2,5MeV Mean=25,191

The calibration spectra for NaI

Energy (MeV)	PMT (au)
0,662	7,696
1,17	12,63
1,33	14,149
2,5	25,191

Unknown source

We have the spectra of the unknown source

We make gaus fit at the biggest peak

► We find MEAN (y)

We have the calibration for NaI detector

We find the energy (x) with equation from calibration y=9,5078x+1,458

Unknown source 1

Mean=y=6,284 y=9,5078x+1,458, x=(y-1,458)/9,5078=(6,284-1,458)/9,5078=0,507 E=0,507MeV

Unknown source 1=Na22

Unknown source 2

Mean=y=4,551 y=9,5078x+1,458, x=(y-1,458)/9,5078=(4,551-1,458)/9,5078=0,325 E=0,325MeV

Unknown source 2=Sn-125m

Task4 Attenuation Coefficient

Finding

Attenuation

Coefficient

> We want to determine the attenuation coefficient μ $I = I_0 e^{-\mu x}$

>We have shields of different thikness. For each shield we determine I/I₀

We make a graph where we have I/I. on Oy and Thikness on Ox

> We make exponential fit and we find μ

Cu

TASK5

SRIM PROGRAM + CALCULATION OF HE RANGE IN AIR

• We use plastic detector to calculate the alpha particle range in the air using Plutonium 239 source with energy=5MeV

SRIM PROGRAM-SIMULATION

0

SRIM PROGRAM-SIMULATION

	A(X)	B(Y)
Long Name		
Units		
Comments		
F(x)		
1	440	0
2	390	0,5
3	360	1
4	340	1,5
5	320	2
6	300	2,5
7	280	3
8	260	3,5
9	260	3,8
10	260	4
11		

 \bigcirc

 \bigcirc

 \bigcirc

TASK6 PIXEL DETECTOR

- It is an advanced detector like a digital camera
- It has 3 parts -sensor, electronic cip and Usb
- The size of the sensor is 1.5x1.5 cm.
- It has 256 x 256 pixels (65.536 pixel).
- The pixel size is 55µm x 55µm
- The pixel size is 55µm x 55µm

It has high resolution and It is used for regestration different types of radiation

 Determination the range of Alpha partcles with (Am-241) energy about 4 MeV in air using pixel detector

- no alpha particles are detected
- Maximum of alpha particle range is 3 cm

► R=3 cm

Conclusion

This practice helped us to gain experience in:

- Different types of radiation sources, and detection of radiation.
- Radioactivity and naturally occurring radioactive materials
- Calculation of *Resolution* diffrent scintillation detectors (BGO and NaI).
- **Energy calibration** of some scintillation detectors by using standard sources.
- ▶ Identify of *unknown source* by using energy calibration curve.
- Determination of *Attenuation coefficient* for different materials (Al and Cu).
- Determination of *alpha range in air* using Pixel and Plastic detectors.
- Monto Carlo simulation SIRM software.

References

- I. Cember, H., Introduction to Health Physics, 3rd Edition, McGraw-Hill, New York (2000).
 - 2. Attix, F.H., Introduction to Radiological Physics and Radiation Dosimetry, Wiley, New York (1986).
 - 3. Knoll, G.F., Radiation Detection and Measurement, 4th Edition