FACULTY OF HOULSRO

Joint Institute for Nuclear Research Dubna

International Student Practice - Radiation Protection and the Safety of the Radiation Sources -

Student

Danijela Rajić Faculty of Tachnology, University of Novi Sad, Serbia **Supervisor**

Said M. Shakour Dzhelepov Laboratory of Nuclear Problems JINR, Dubna, Russia

RADIATION

Radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium.

This includes:

- electromagnetic radiation,
- particle radiation,
- acoustic radiation,
- gravitational radiation

Radiation Spectrum

Dose assessment

There are a number of factors that must be taken into consideration in calculating the quantity, or dose, of radiation a person has received, including
1- the nature of the ionizing radiation
2- the strength of the source
3- the biological sensitivity of the area exposed, and exposure factors such as time, distance, and shielding from the source.

Lectures

-Activity

- -Radiation dose terminology and units
- -Occupational dose limits for radiation workers
- -Deterministic and stochastic effects
- -Types of dosimeters
- -Radiation sources used in laboratory and theri spectrum

Scintillation detectors

- BGO Bismuth Germanate (Bi₄Ge₃O₁₂)
- Highly effective gamma ray absorber;
- Diverse applications: PET, HEP, NP, space and medical physics;
- Crystals: 75 mm max diameters; 300 mm max lengths;
- Wavelength range: 375-650 nm.

Nal (Tl) – Sodium Iodide (Tl)

- A well established and the most extensively used scintillator;
- Used for detection of gamma rays of low and intermediate energies;
- Have an optical output well match to the maximum sensitivity of commonly available PMTs and it is independent of temperature;
- Crystals: 150 mm max diameters; 400 mm max lengths;
- Wavelength range: 325-550 nm.

Joint Institute for Nuclear Research

Dubna

Scintillator properties of crystals

Scintillator	Light output	Decay (ns)	Wavelength (nm) max	Density (g/ cm2)	Hygroscopic
Na(TI)	100	250	415	3.67	yes
Csi	5	16	315	4,51	slightly
BGO	20	300	480	7.13	no
BaF2(f/s)	3/16	0.7/630	220/310	4.88	slightly
CaF2	50	940	435	3.18	no
CdWO4	40	14000	475	7.9	no
LaBr3(Ce)	165	16	380	5.29	yes
LYSO	75	41	420	7.1	no
YAG(Ce)	15	70	550	4.57	no

Photomultipliers Tubes (PMT)

Experimental setup

BGO Scintillation detector

Dependence of resolution on applied voltage for BGO detector

1200V

1300V

Dubna, February 8 to March 19, 2021

1400V

1500V

BGO DETECTOR

1600V

Dubna, February 8 to March 19, 2021

1900V

2000V

Dubna, February 8 to March 19, 2021

Dubna, February 8 to March 19, 2021

Dependence of resolution on applied voltage for Nal detector

900V

Dubna, February 8 to March 19, 2021

1000V

Dubna, February 8 to March 19, 2021

1100V

Dubna, February 8 to March 19, 2021

1200V

Dubna, February 8 to March 19, 2021

1300V

Dubna, February 8 to March 19, 2021

Dependence of resolution on applied voltage for NaI detector

Energy calibration for Nal detector

Dubna, February 8 to March 19, 2021

Determination of an attenuation coefficient

Experiment equipment:

- BGO scintillation detector
- operating volt 2000V
- Gamma Source Cs137 with energy 661 KeV

$$I = I_0 e^{-\mu x}$$

$\mu = 0.65001 \pm 0.05$

Attenuation coefficient for Cu

Attenuation coefficient for Al

.020

.016

.012

.008

.004

0

50 mm

Rande determination of an alpha particle in air

Ionization

Depth for α -radiation in air

Rande determination of an alpha particle in air

CONDITIONS:

He range in air source : Pu239 Energy of He : 5 MeV detector: plastic applied voltage: 2000 V

Pixel Detector

Pixel detector is an advanced detector like a digital camera. It consists of 3 parts: -Sensor (Si) -Electronic chip -USB

The size of the sensor is 1.5x1.5 cm.
It has 256 x 256 pixels (65.536 pixel).
The pixel size is 55µm x 55µm.
It has high resolution.
It is used for regestration different types of radiation

Hybrid Pixel Detector

aluminum backside layer (ohmic contact) high resistivity n-type silicon electrons of the solder bump pixel readout electronics chip charged particle

Detector and electronics readout are optimized separately

Hybrid Pixel Detector - Cross Section

FRCULTY OF FRCULTY OF TECHNOLOGY HOVI SRO

Joint Institute for Nuclear Research Dubna

Determination the range of **Alpha** particles with (Am-241) energy about 4 MeV in air using pixel detector.

Туре	Number
Alpha	5
Beta	794
Gamma	287
Total	1086

Thorium rod

Туре	Number
Alpha	46
Beta	563
Gamma	116
Total	725

FRCULTY OF HOULSRO

Joint Institute for Nuclear Research Dubna

Absorption of alpha particle energy in the air at 0, 1, 2 cm

Maximum of alpha particle range is 3 cm, no alpha particles are detected

Absorption of alpha particle energy in the air by moving the alpha source away by 2.5 cm

FACULTY OF HOULSRO

Joint Institute for Nuclear Research Dubna

CONCLUSION-ACQUIRED KNOWLEDGE

- -Radiation
- -Different types of radiation sources
- -Dose of radiation
- -Types of dosimeters
- -Radiation detectors (BGO, Nal)
- -Energy calibration of some scintillation detectors by using Standard sources
- -Calculation of Resolution diffrent scintillation detectors
- -Determination of Attenuation coefficient for different materials
- -Determination of alpha range in air using Pixel and Plastic detectors
- -Assessment the ranges and energy of alpha particles using Monto Carlo simulation SRIM software

REFERENCES

-Cember, H., (2000) Introduction to Health Physics, 3rd Edition, McGraw-Hill, **New York** -Attix, F.H., (1986) Introduction to Radiological Physics and Radiation *Dosimetry*, Wiley, New York -Martin J.E., (2013) *Physics for Radiation Protection*, Wiley-VCH Verlag Gmbh; Co KGaA, Weinheim -Currie, L.A. (1968). *Limits for qualitative detection and quantitative* determination. Application to radiochemistry. Anal. Chem. 40, 586-593. -L'Annunziata M. F. (2012) Handbook of Radioactivity Analysis, Academic Press, 3rd edition. -G. F.Knoll, (1987) Techniques for Nuclear and Particle Physics Experiments (Springer - Verlag, Berilin, Germany

THANK YOU FOR ATTENTION