Introduction to Quantum ComputingReportQubit code / measurements

Svetlana Pitina Privolzhsky Research Medical University - Russia

Contents

Quantum mechanics; TRANSMON qubits; read/set

2 ROOT package

- 3 HYBRILIT experience; SU2 package
- 4 Qubit measurements
- 5 Quant-gates; Groover algorithm

Contents

Quantum mechanics; TRANSMON qubits; read/set

2 ROOT package

- 3 HYBRILIT experience; SU2 package
- 4 Qubit measurements
- 5 Quant-gates; Groover algorithm

particles have wavelength : $\lambda = h / p$

... and a wavefunction : $|\psi\rangle$ = Hilbert-space vec

Superposition of states

overlap of state ϕ onto ψ : prob% = $|\langle \phi | \psi \rangle|^2$

- of uncertain momentum and location
- Heisenberg uncertainty

Quantisation

Schrödinger equation

$$i\hbarrac{\partial}{\partial t}\psi(x,t)=-rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}\psi(x,t)+V(x)\psi(x,t)$$

Spin

Stern-Gerlach experiment

- electron has intrinsic spin
- that is quantised \uparrow or \downarrow

$$H = -\vec{\mu} \cdot \vec{\mathbf{B}} = -\mu \vec{\sigma} \cdot \vec{\mathbf{B}}$$

$$ec{\sigma} imes ec{\sigma} \ = \ 2 i \, ec{\sigma}$$

- $|\langle\rangle$ + $|\rangle$ = $\sqrt{2}$ | \uparrow >

pure state in one base is superposition in another

IINI

Transmon qubits

JINR University Centre

w/ MLIT Department and DFCTI Department IFIN-HH, Romania

25.March.2022

Transmon qubits

Transmon qubit

- anharmonicity engineered
- immune to V_q variations
- phase-state qubit

 $E_1 / E_c = 30.00$

0

0.25

0.5

Ng

0.75

Interaction w/ qubits

Microwave cavity

- fundamental mode

 $H_{int} = -d \cdot E_x$

- interaction w/ qubit dipole

$$= -d_x \mathcal{E}_0 \left(\hat{a} + \hat{a}^{\dagger} \right) (\sigma_+ + \sigma_-)$$

DRESSED states

JINE

Qubit readout

Readout pulse

- homodyne measurement
- dressed-state frequency

Qubit manipulation

Manipulation pulses

JINR University Centre

Contents

2 ROOT package

- 3 HYBRILIT experience; SU2 package
- 4 Qubit measurements
- 5 Quant-gates; Groover algorithm

ROOT package

- I downloaded from CERN the ROOT-5.34 (Windows)

- I learned how to write my own macro and do fits

```
_____ ROOT FITS ____
void myfit() {
// TGraph gr ("data.txt", "%lg %lg");
// TGraph grr ("test.txt", "%lg %*lg %lg")
// TGraph grrr("test.txt", "%lg %*lg %*lg %lg")
gStyle->SetOptFit (1)
gStyle->SetLineWidth(2)
TGraphErrors* gr = new TGraphErrors("z2.txt")
Int_t N = qr -> GetN()
Double_t x,y
  for (Int_t i=0; i<N; i++) {
    qr->GetPoint (i, x,
                                        0.01)
    gr->SetPointError(i, 0.01,
                   (i, x/1.0,
    gr->SetPoint
TF1 fit("fit", "([0]+[1]*sin(x*[2]+[3]))", 0, 49)
                      (0, "ped"
(1, "A"
    fit.SetParName
    fit.SetParName
                       (1,
    fit.SetParName (2, "f0"
fit.SetParName (3, "phi"
    fit.SetParameter(0, 0.500 )
    fit.SetParameter(1, 0.500)
    fit.SetParameter(2, 0.400)
    fit.SetParameter(3, 0.000)
  gr->Fit("fit")
```


						Terminal		-	×
File	Edit	View	Search	Terminal	Help				
3	f0		З.	41364e-0	91	5.52719e-05	-3.53413e-07	-2.40669e+01	
4 root	phi [3]		1.	90931e+(00	1.55917e-03	7.86667e-06	-8.55500e-01	

IIIN :

Contents

2 ROOT package

- 3 HYBRILIT experience; SU2 package
- 4) Qubit measurements
- 5 Quant-gates; Groover algorithm

SU2 package

- model dispersion of a square wave on a transmission line:

$$-\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \partial_x \equiv \begin{pmatrix} 0 & L\\ C & 0 \end{pmatrix} \partial_t + \begin{pmatrix} 0 & R\\ G & 0 \end{pmatrix} \Big|_{\begin{pmatrix} u\\ i \end{pmatrix}}$$

JINR University Centre

 $Z_0 = Y_0^{-1} = \sqrt{L/C}$, line characteristic impedance

$$\lambda_d^{-1} = (RY_0 - GZ_0)/2$$
, dispersion length

 $\lambda_a^{-1} = (RY_0 + GZ_0)/2$, attenuation length

 $c = 1/\sqrt{LC}$, signal propagation speed

- solution:

$$\phi = e^{-\gamma^2 (1 + \sigma_1 \beta) \frac{j \sigma_2}{\lambda_d} (x - vt)} |_{\phi_0}$$

SU2 package

- I used the SU2 package to model the propagator:

SU2 package

- I obtained a very nice solution of triangular wave dispersion:

Contents

2 ROOT package

- 3 HYBRILIT experience; SU2 package
 - Qubit measurements
- 5 Quant-gates; Groover algorithm

4

Qubit resonance frequency

w/ MLIT Department and DFCTI Department IFIN-HH, Romania 25.March.2022

T₁ determination

Qubits on the Bloch sphere

 $|\psi\rangle = \psi_{\uparrow}|\uparrow\rangle + \psi_{\downarrow}|\downarrow\rangle$

Bloch sphere

- 2 level system always equivalent to spin
- arbitrary wave-vector can be written as:

$$=e^{i\phi_{\uparrow}}\bigg(|\psi_{\uparrow}|\cdot|\uparrow\rangle+e^{i(\phi_{\downarrow}-\phi_{\uparrow})}|\psi_{\downarrow}|\cdot|\downarrow\rangle\bigg)$$

$$=e^{i\phi_{\uparrow}}\sqrt{|\psi_{\uparrow}|^{2}+|\psi_{\downarrow}|^{2}}\left(\frac{|\psi_{\uparrow}|}{\sqrt{|\psi_{\uparrow}|^{2}+|\psi_{\downarrow}|^{2}}}\mid\uparrow\rangle+\frac{|\psi_{\downarrow}|}{\sqrt{|\psi_{\uparrow}|^{2}+|\psi_{\downarrow}|^{2}}}e^{i(\phi_{\downarrow}-\phi_{\uparrow})}\mid\downarrow\rangle\right)$$

$$=e^{i\phi_{\uparrow}}\sqrt{|\psi_{\uparrow}|^{2}+|\psi_{\downarrow}|^{2}}\left(\cos\frac{\theta}{2}|\uparrow\rangle+\sin\frac{\theta}{2}\,e^{i(\phi_{\downarrow}-\phi_{\uparrow})}|\downarrow\rangle\right)$$

JINR JINR Bloch sphere

 $|0\rangle + i$

 $|\psi\rangle$

Z

 $|0\rangle$

 $|1\rangle$

Quantum logical gates

GATE	CIRCUIT	MATRIX	TRUTH	BLOCH
	REPRESENTATION	REPRESENTATION	TABLE	SPHERE
H gate: rotates the qubit state by π radians (180°) about an axis diagonal in the x-z plane. This is equivalent to an X-gate followed by a $\frac{\pi}{2}$ rotation about the y-axis.	—H	$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$\frac{\text{Input}}{ 0\rangle} \frac{\text{Output}}{\frac{ 0\rangle + 1\rangle}{\sqrt{2}}}$ $\frac{ 1\rangle}{\sqrt{2}} \frac{ 0\rangle - 1\rangle}{\sqrt{2}}$	Z 180° x x

$$2\mathbf{U}_{3}(\theta,\phi,\lambda) = \cos\frac{\theta}{2} \left[(1+e^{i(\lambda+\phi)}) \cdot \mathbf{1} + (1-e^{i(\lambda+\phi)}) \cdot \sigma_{z} \right] + \sin\frac{\theta}{2} \left[e^{-i\lambda}\sigma_{+} + e^{i\phi}\sigma_{-} \right]$$

controlled-U gates if $q[0] = |1\rangle$ operation U is performed on q[1]else ID

Calculation of results

Entanglement

- 2 qubit states: $|\uparrow\uparrow\rangle$, $|\uparrow\downarrow\rangle$, $|\downarrow\uparrow\rangle$ and $|\downarrow\downarrow\rangle$

- entangled states:

$$|\psi\rangle = \frac{|\downarrow,\uparrow\rangle\pm|\uparrow,\downarrow\rangle}{\sqrt{2!}}$$

Circuit composer

Circuit editor

OPENQASM 2.0; 1 2 include "qelib1.inc"; 3 qreg q[5]; 4 creg c[2]; 5 6 h q[0]; 7 id q[1]; 8 ch q[0],q[1]; 9 measure $q[0] \rightarrow c[0];$ 10 11 measure q[1] -> c[1];

IBM-Q Experience

Create account

JINR University Centre

Oracle

Detect the **1**,**1** state

 $NOT (|0\rangle - |1\rangle) = |1\rangle - |0\rangle = - (|0\rangle - |1\rangle)$ $ID (|0\rangle - |1\rangle) = |0\rangle - |1\rangle = + (|0\rangle - |1\rangle)$

JINR

Signals with a " - " the target state

IBM Q-Experience

Circuit composer

Implementation & results

QASM-2 Circuit editor

- 1		1	
1	OPENQASM 2.0;	13	h q[2];
2	<pre>include "qelib1.inc";</pre>	14	x q[1];
3		15	x q[2];
4	<pre>qreg q[5];</pre>	16	h q[1];
5	<pre>creg c[2];</pre>	17	cx q[2],q[1];
6		18	h q[1];
7	x q[0];	19	id q[2];
8	h q[1];	20	x q[1];
9	h q[2];	21	x q[2];
10	h q[0];	22	h q[1];
11	ccx q[1],q[2],q[0];	23	h q[2];
12	h q[1];	24	<pre>measure q[1] -> c[1];</pre>
		25	<pre>measure q[2] -> c[0];</pre>

Implementation & results

Personal opinions

- I learned about the quantum physics fundamentals of qubits and did some interesting hands-on determinations (f_0 , T_1 , T_2) of the ibmq_armonk qubit system on IBM's Q-Experience site

- We had access to the supercomputing cluster HybriLIT of JINR, which was very cool – for an SU2 simulation package in C++

- I learned to use the ROOT package from CERN to process and do fits on data

- We learned how to process multiple-entry quantum gate output and walked through the Grover quantum search algorithm – and after implemented and ran it on IBM's Q-Experience site

- The professors were very good and friendly, I highly recommend this student training programme !

