

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Radiation Protection and the Safety of the Radiation Sources

INTEREST - **INTE**rnational **RE**mote **S**tudent **T**raining at JINR

Wave 3

Student:

Pitina Svetlana Privolzhsky Research Medical University Nizhniy Novgorod, Russia

Project Supervisor:

Said M. Shakour Dzhelepov Laboratory of Nuclear Problems JINR, Dubna

08 February – 19 March, 2021

Radiation Protection and Dosimetry

Figure 1. Sources of Radiation

Radiation Protection and Dosimetry

Scintillation detectors and experimental set-up

Figure 2. Photomultipliers Tubes (PMT)

Figure 3. Experimental set-up

Scintillator properties of crystals

Scintillator	Light output	Decay (ns)	Wavelength (nm)	Density (g/cm2)	Hydroscopic
Na (TI)	100	250	415	3.67	Yes
Csl	5	16	315	4.51	Slightly
BGO	20	300	480	7.13	No
BaF2 (f/s)	3/16	0.7/630	220/310	4.88	Slightly
CaF2	50	940	435	3.18	No
CdWO4	40	14000	475	7.9	No
LaBr3(Ce)	165	16	380	5.29	Yes
LYSO	75	41	420	7.1	No
YAG(Ce)	15	70	550	4.75	No

Task 1.1. The relation between the resolution and applied Voltage for BGO detector

Figure 4. The relation between the resolution and applied voltage for BGO detector

Task 1.2. Energy calibration for BGO

Task 2.1. The relation between the resolution and applied Voltage for Nal detector

Applied Voltage, V

Figure 7. The relation between the resolution and applied voltage for NaI detector

Task 2.2. Energy calibration for Nal

Equation of calibration:

Task 2.3. Identification of unknown sources

- > We get the spectrum of unknown source
- ➢ We make GAUS FIT and find Mean
- From energy calibration we can determine energy peak of unknown source by using equation from calibration of Nal detector:

y = 1.45953 + 9.50263x,

where y = PMT signal A.U, x = Energy of unknown source

Task 2.3. Identification of unknown sources

Unknown sources 1

y = 1.45953 + 9.50263x y = 6.283 6.283 = 1.45953 + 9.50263x x = 0.507

8-Na22_Nal_ch4_800V_5mV_T24-33.9_0.7Gss_599ns_16122019_0ch

Unknown sources 2

y = 1.45953 + 9.50263x y = 4.488 4.688 = 1.45953 + 9.50263x x = 0.34

9-Am241_Nal_ch4_800V_5mV_T24-33.9_0.7Gss_599ns_16122019_0ch

Figure 11. Am-241 spectrum

Task 3. Attenuation coefficient

Attenuation coefficient describes the fraction of a beam that is absorbed or scattered per unit thickness of the absorber.

$$I = I_0 e^{-\mu x}$$

where μ is attenuation coefficient

Radiation source

Figure 12. Experimental set-up for determining the attenuation coefficient

Task 3. Attenuation coefficient

Figure 13. Determination of attenuation coefficient for Al

Figure 14. Determination of attenuation coefficient for Cu

Task 4. SRIM Simulation

Task 4. Alpha range in air

Task 5. Pixel detectors (PD)

- > PD is an **advanced detector** like a digital camera;
- PD has high resolution;
- PD is used for registration different types of radiation

Figure 18. Pixel detectors

Task 5. Pixel detectors (PD)

Determination the range of α -particles with (Am-241) energy about 4 MeV in air using pixel detector.

1.7 MeV

Figure 19. Absorption of alpha particle energy in the air at 0 cm

Figure 21. Absorption of alpha particle energy in the air at 2 cm

Figure 20. Absorption of alpha particle energy in the air at 1 cm

Figure 22. Absorption of alpha particle energy in the air at 2.5 cm

Task 5. Pixel detectors (PD)

Determination the range of α -particles with (Am-241) energy about 4 MeV in air using pixel detector.

There are no α-particles at 3 cm distance Maximum of α-particle range is 3 cm

Conclusion

- > Acquiring base in radiation protection and safety;
- Evaluation of exposure, absorbed, equivalent, effective doses and recommended radiation protection protocol;
- Radioactivity and naturally occurring radioactive materials NORM;
- > Evaluation of exposure, absorbed, equivalent, and effective doses;
- > Providing the necessary practical skills and basic tools for:
 - Calculation of *resolution* of different scintillation detectors (BGO and NaI);
 - Energy calibration of some scintillation detectors by using Standard sources;
 - Identification of *unknown sources* using the energy calibration function;
 - Determination of the *attenuation coefficient*;
 - Determination of *alpha range* in air using Monte Carlo simulations via SRIM software, Plastic detector and Pixel detector.

References

- 1. Attix, F.H., *Introduction to Radiological Physics and Radiation Dosimetry*, Wiley, New York (1986).
- 2. Cember, H., *Introduction to Health Physics*, 3rd Edition, McGraw-Hill, New York (2000).
- 3. Knoll, G. F., *Radiation detection and measurement,* 4th Edition, Wiley (2010).
- 4. Martin J.E., *Physics for Radiation Protection*, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2013).
- 5. Nuclear Radiation and Health Effects (2019). Available at: <u>https://www.world-nuclear.org/information-library/safety-and-</u> <u>security/radiation-and-health/nuclear-radiation-and-health-effects.aspx</u> (accessed 14 March 2021)