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Abstract

In this paper we consider static topological solitonic solutions for O(3) sigma model. In the
beginning some theoretical references are noted, such as topological nature of solitons and
isomorphism between domain and target spaces. The feature of equivalence of north and
south pole stereographic projections was also discussed. Then several cases of solutions were
su�ciently delailed and analysed using numerical methods in C++ and visualised with graphing
software.

1 Introduction

The possibility of existance of spacially localized solitonic solution in scalar �eld theory with
classical Lagrangian density, e.g.

L =
1

4
∂µϕ

a∂µϕa − U(|ϕ|) (1)

is de�ned by the number of spacial dimension d of that space. Derrick's theorem states[3] that if
we deal with model in d=2 spatial dimensions, which may include a set of N scalar �elds, it will
be impossible to construct scale invariant (i.e. stable with regard to changing its characteristic
size) solitonic solution. However, it does not mean the solitons are excluded; the subtlety related
to the possible choice of the vacuum boundary conditions allows us to construct topologically
nontrivial planar solitons.

One of such cases is sigma model � a nonlinear scalar �eld theory, where the �eld takes values
in a target space which is a curved Riemannian manifold, usually with a large symmetry. The
simplest example is the O(3) sigma model, in which the target space is the unit 2-sphere, S 2.
O(3) in the model name stands for group of rotational symmetry of a sphere, the �sigma� refers
to the fact that the model is sometimes formulated in terms of �elds ϕ1, ϕ2, σ and σ, obviously,
can be derived from two other components due to their location on unit sphere of constant
radius.

This �eld model was originally designed as a simpli�ed model of strong interactions between
nucleons and π-mesons[4]. It is also known in theory of condensed matter as continuum approximation
of the 2-dimensional isotropic Heisenberg ferromagnet[5]. The topological solutions of this model
were discovered by Belavin and Polyakov in 1974 during their work on Metastable states of two-
dimensional isotropic ferromagnets[6].

2 General theory

2.1 Isomorphism between spaces CP1 and S 2

Let us now consider the triplet of real scalar �elds ϕa = (ϕ1, ϕ2, ϕ3) restricted to the unit sphere
S 2 via the constraint

ϕa · ϕa = 1 (2)

and choose potential energy in Lagrangian (1) in following way:

L =
1

4
∂µϕ

a∂µϕa + λ(1− ϕa · ϕa) (3)

where λ is the Lagrange multiplier. An exceptional property of the sphere S 2 is that it admits a
complex structure, i.e., S 2 = CP1 . Indeed, the usual stereographic projection from the sphere
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S 2 to the complex plane allows us to reformulate the model in terms of the complex variable
(see Figure 1): Stereographic projection from the north pole N can be obtained by using simple

geometrical sphere equation in �eld components, already mentioned as (1) and straight line
equation in R3(x, y, z) between two points N(0,0,1) and W(Re(W),Im(W),0):

1− z
1

=
x

Re(W )
=

y

Im(W )
(4)

Now combining (2) and (4) we get �elds W,W , which are inhomogeneous coordinates on the
one-dimensional projective space CP1:

W =
ϕ1 + ı̇ϕ2

1− ϕ3

(5)

Then the inverse transformations are:

(ϕ1, ϕ2, ϕ3) =

(
W +W

1 +WW
, ı̇
W −W
1 +WW

,
1−WW

1 +WW

)
(6)

And, obviously, Lagrangian (3) can be rewritten in following way:

L =
∂µW∂µW(
1 +WW

)2 (7)

In terms of holomorphic derivatives energy of static con�guration takes form

E =
|Wz|2 + |Wz|2(

1 + |W |2
)2 (8)

The last identity will be used further.

Figure 1: Stereographic projection S
2 7→ R2 = C

2.2 Equivalence between north and south pole stereographic projections

It deserves to be acknowledged that this model also, clearly, maintains stereographic projection
from the south pole S and, moreover, it does not change the form of Lagrangian density (7),
(8).
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Let us again consider Figure 1

New variable U now stands for south pole stereographic projection and its value can be
easily found with the help of simple geometrical relations: cross section of unit sphere by plane
(NWO) contains unit circle with centre in point O and two triangles: 4 NOW and 4 NΦiS,
where Φi is considered point of triplet of �elds on the unit sphere. Apparent ratio between
absolute values of U and W is |U | = |W |−1. It is clear, that they have the same argument θ, so
we can easily construct them:

U =
1

|W |
eı̇θ, W = |W | eı̇θ ⇒ U = W

−1
(9)

After some calculations it can be �gured out that Lagrangians of north and south stereographic
projections have equivalent form and, ergo, energies of static con�gurations are equal to each
other, i.e.:

E =
|Wz|2 + |Wz|2(

1 + |W |2
)2 =

|Uz|2 + |Uz|2(
1 + |U |2

)2 (10)

In the next chapter of the report it will be shown that changing the point of consideration of
solitonic con�guration from north to south and vice versa will not e�ect any of its parameters
on complex plane.

2.3 Topological nature of solitonic solutions

Let us now look at the integral energy of static con�guration

E =
1

2

∫
∂kϕ

a∂kϕad2x (11)

and also at its alternative forms (8), (10). It is clear, that vacuum state of energy ϕvac = (0, 0, 1)
is approached on the domain space R2 (or C) at points that lie in in�nity. That is why we can
identify them and compactify the domain space from R2 to S 2. Then the �eld of the O(3)
model becomes a map ϕ : S 2 7→ S 2 from physical space to target space, which is classi�ed
by the homotopy group Π2

(
S 2
)

= Z. This property implies that each �eld con�guration is
characterized by an integer topological charge Q

Q =
1

4π

∫
~ϕ · (∂x~ϕ× ∂y~ϕ)d2x (12)

The charge is equal to the number of solitons on the C plane. After that, considering obvious
integral inequality ∫

(∂i~ϕ± εij ~ϕ× ∂j ~ϕ) · (∂i~ϕ± εik~ϕ× ∂k~ϕ) d2x ≥ 0 (13)

and using formulae (11), (12) we get the Bogomolny bound E ≥ 2π |Q|, the lower bound on the
energy in terms of the number of solitons. It becames equality, when the factors in expression
(13) are equal to zero. If we reformulate them in terms of change of variable (5), (6), they turn
into the equivalent of Cauchy-Reimann equations:

Wz = 0 and Wz = 0 (14)

for �+� and �-� signs in (13) respectively. Then the general expression for n-solitonic solution is
a holomorphic map

W (z) =
Pk(z)

Qm(z)
(15)
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where Pk, Qm are polynomials and n = max(k,m).

3 Solution

The problem of constructing plots of �eld components and energy density did not require higly
sophisticated numerical methods. All calculations were done in C++. To facilitate process of
working with complex numbers library <complex> was used. The only nontrivial issue was
calculating complex variables in (8) and (10). In this work Cauchy's di�erentiation formula was
used to meet the challenge:

f (n)(z0) =
n!

2πı̇

∮
f(z)dz

(z − z0)n+1
(16)

It can be turned into code and calculate derivative derres with high accuracy:

double n = pow(N,=1) ;
double phi = (2 * M_PI*n ) ;

complex<double> z1 ;
double R = 0 . 0 1 ;
complex<double> z0 ( r e a l ( z ) + R, imag ( z ) ) ;

for ( int j = 0 ; j <=(N + 1 ) ; j++)
{

complex<double> z0 ( r e a l ( z ) + R * cos ( phi * j ) , imag ( z ) + R * s i n ( phi * j ) ) ;
complex<double> z1 ( r e a l ( z ) + R * cos ( phi *( j +1)) , imag ( z ) + R * s i n ( phi *( j +1)) ) ;
delta_z = z1 = z0 ;
d e r r e s = de r r e s + U( z0 )*pow( z0 = z , =2)*delta_z ;

}
de r r e s = (= I / (2 * M_PI) )* de r r e s ;

A circle of R radius with the centre in z0 point is chosen as a closed circuit. Other aspects of
full code are too simple and not worth discussing.
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4 Results

4.1 Equivalence between N and S stereographic projections

As it was said in part 2.2 of the report, changing point of viev from one pole to the opposite
does not change the solution. Let us check it on some soliton con�guration now. Consider
holomorphic map of degree 2:

W (z) =
λ1e

ı̇θ1

z − a1
+
λ2e

ı̇θ2

z − a2
(17)

Where λ1 = 1.3, θ1 = 1, a1 = i and λ2 = 1.0, θ2 = 2, a2 = 1. Now let us use identity (9):

U(z) =
1

λ1e−ı̇θ1
z−a1 + λ2e−ı̇θ2

z−a2

(18)

And compare graphs of energy density:

Figure 4.1: Application of formula (10) to con�gurations (17) and (18)

As it can be seen from Figure 4.1, the graphs are absolutely identical. Solitons are also kind
of merged together due to the properties of multisolitonic solutions.
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4.2 Building �eld components of con�guration

Let us consider a group of Q=8 solitons on a complex plane. The corresponding holomorphic
map is:

W (z) =
1

1
z

+ 1
z+ 1

2
−ı̇ + 1

z− 1
2
−ı̇ + 1

z−1
+ 1

z+1
+ 1

z+ 3
2
+ı̇

+ 1
z+ 3

2
−ı̇ + 1

z+2ı̇

(19)

Using transformations (6) we can build graphs of �eld components. See the parameters on �gure
4.2.

Figure 4.2: Parameters of con�g. (19).
Upper left plot � Energy density, upper right � ϕ1 component, bottom left � ϕ2 component,
bottom right � ϕ3 component.
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4.3 Con�guration of two solitons with di�erent parameters

A general formula of Q=2 con�guration is

W (z) =
(z − a)(z − b)
(z − c)(z − d)

(20)

Where a, b, c, d ∈ C.
Here are three cases of di�erent combinations:

� The �rst case: a = (1,1); b = (1,-1); c = (-1,1); d = (-1,-1);

� The second case: a = (0.7,0.7); b = (-0.7,0.7); c = (-2,-2) ; d = (0.7,-0.7) ;

� The third case: a = (-2,0); b =(0,2); c = (1,0.1); d = (1,-0.1).

See the results of graphing energy density on �gure 4.3.

Figure 4.3: Energy density of con�g. (20).
Upper left plot � the third case, upper right � the second case, bottom plot � the �rst case
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4.4 Changing position of solitons

Let once again look at formula (19). It can be easily seen both from theory and graph 4.2,
that numbers near z in each of the fractions are the positions of corresponding lumps of energy.
Changing them in following way:

W (z) =
1

1
z+4

+ 1
z+3

+ 1
z+2

+ 1
z+1

+ 1
z

+ 1
z−1

+ 1
z−2

+ 1
z−3

(21)

Gives us con�guration of 8 equidistant solitons, aligned along X axis. See �gure 4.4:

Figure 4.4: Energy density of aligned con�guration

As it was mentioned in part 4.1 of the report, their shape is not equal due to features of
multisolitonic solutions. This issue can be �xed by relocating them to in�nite distance from each
other. In such a case they all will be the same form and shape as a lone soliton con�guration
Q=1 with set parameters.

5 Conclusion

To conclude, O(3) sigma model � a nonlinear scalar �eld theory was outlined and its key points
were analysed. Such of its features as constructing soliton con�gurations from the point of viev
of topology and isomorphism between spaces CP1 and S 2 were discussed. Also the property of
equivalence of north and south pole stereographic projections was geometrically derived, proven
and later used. Several graphs of di�erent solitonic con�gurations were obtained via numerical
methods (C++) and data visualising software.
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