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1. Introduction 

 
One of the observables in the high energy experiment is multiplicity - the number 

of secondary particles. The most popular one is the multiplicity of charged 

particles. There are more and more accelerators and projects with higher and higher 

energy. With energy increasing new channels of decays were discovered, new 

particles were born. The quantum chromodynamics (QCD) was created to study 

strong interaction and to provide deep understanding of matter and energy. QCD 

allows us to calculate hard processes of particle interactions at the amplitude level. 

However, dificulties arise when describing the hadronization stage, when quarks 

and gluons confine into hadrons. To account for this phase, a two-stage model is 

proposed, which adds a phenomenological hadronization stage to pQCD 

calculations. 

 

Multiparticle production (MP) constitutes a significant domain within 

high-energy physics, and the study of multiparticle production serves as 

a vital testing ground for QCD. The annihilation process of electron-positron 

pairs (Figure 1) stands out as one of the most effective means to investigate MP 

phenomenon. When an electron collides with a positron, they can annihilate 

into either a virtual photon or a Z 0 boson. Both the virtual photon and the 

Z 0 boson subsequently decay into pairs of fermions and anti-fermions, 

specifically quarks and antiquarks. 

𝑒+𝑒− → 𝛾𝛾/𝑍0 → 𝑞q−  

 

The first stage of fission partons at high energy is called a stage of cascade. The 

electron and positron annihilate into a virtual photon or Z 0  boson. These 

virtual particles then decay into pairs of fermions and antifermions, including 

quarks and antiquarks.  
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The second stage – a stage of hadronization. Hadronization describes the 

conversion of quarks and gluons into hadrons. It is important to note that 

unlike the first stage, the hadronization stage cannot be described by 

perturbative quantum chromodynamics (QCD) due to the low energies of the 

particles involved. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Diagram of e+ e− annihilation 

 

As a result, the two-stage process of electron-positron pair annihilation 

illustrates a sequential progression of events, beginning with the high-energy 

splitting of particles in the first stage and culminating in the production of 

observable hadrons in the second stage. This comprehensive journey provides 

valuable insights into multiparticle production mechanisms. Each stage is crucial 

for understanding the processes involved in particle multiplicity generation and 

remains a subject of ongoing research in elementary particle physics. 
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2. Cascade stage 
 

To study multiparticle production we used approach of A. Giovannini [1]. The 

main idea is to describe quark and gluon jets and their development through 

subnuclear matter as Markov branching processes. 

The idea of applying branching Markov processes to Quantum Chromodynamics 

(QCD) in Giovannini’s work is that the evolution of jets formed in high-energy 

particle collisions can be described as a sequence of random branchings that follow 

certain probability laws. 

It was proposed to interpret the natural QCD evolution parameter: 

𝑌 = 
1

2𝜋𝑏
log[1 + 𝛼𝛽 log

𝑄2

𝜇2
] 

where 2𝜋𝑏 = 
1

6
 (11𝑁𝑐 −  2𝑁𝑓) for a theory with 𝑁𝑐 colors and 𝑁𝑓 

flavors, as the thickness value of the QCD jets). 

There are three main elementary processes that contribute to the overall 

gluon or quark distribution inside QCD jets with different weights: 

• gluon fission: g → g +  g, with A∆Y denoting the probability that a 

gluon in the infinitesimal interval ∆Y will convert into two gluons. (*) 

• quark bremsstrahlung: q → q +  g, with 𝐴̃∆Y denoting the probability 

that a quark in the infinitesimal interval ∆Y will radiate a gluon, the quark 

continuing on its way. (**) 

• quark pair creation: g → q +  q̄ , with B ∆Y denoting the probability 

that a quark-antiquark pair will be created from a gluon in the infinitesimal 

interval ∆Y. (***)  

In addition, A, 𝐴̃, B are assumed to be Y-independent constants and each 

individual parton (quark or gluon) acts independently from the others, always 

with the same infinitesimal probability. 

 

 

 

 

 

(2.1) 
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(𝑔) (𝑔) (𝑔) 

(𝑞) (𝑞) 

(𝑔) (𝑔) (𝑔) (𝑞) (𝑞) 

(𝑔) (𝑔) (𝑞) 

(g) 

(𝑞) 

The probability for a gluon or quark to convert into mq quarks and mg gluons in 

the (Y, Y+ΔY) can be given by sum of probabilities 

 

𝛿1,𝑚𝑔𝛿0,𝑚𝑞 
+ 𝑎𝑚𝑔,𝑚𝑞

𝛥𝑌 + 𝑙(𝛥𝑌)   (2.2) 

  
𝛿0,𝑚𝑔𝛿1,𝑚𝑞 

+ 𝑎𝑚𝑔,𝑚𝑞
𝛥𝑌 + 𝑙(𝛥𝑌)        (2.3) 

 

 

Due to only 3 processes are being allowed in the same interval ΔY, we get for 

gluon (2.4) and in case of quark (2.5) 

 

1 + 𝑎1,0 𝛥𝑌 + 𝑎2,0 𝛥𝑌 + 𝑎0,2 𝛥𝑌 + 𝑙(𝛥𝑌) (2.4) 
 

1 + 𝑎0,1 𝛥𝑌 + 𝑎1,1 𝛥𝑌 + 𝑙(𝛥𝑌) (2.5) 
 

Notice that 𝑎1,0 + 𝑎2,0 + 𝑎0,2 = 0 and 𝑎0,1 + 𝑎1,1 = 0 because of probability 

conservation. Let’s identify 𝑎2,0 as A, 𝑎0,2 as Ã, and 𝑎1,1 as B.  

After this, the infinitesimal function for gluon (2.6) and quark (2.7) jets are 

introduced 

 

 

 

 

 

 

 

 

 

Giovannini defines next the probability that mg gluons and mq quarks will be 

transformed into ng gluons and nq quarks over a jet of thickness Y and calls it  

Pmgmqngnq( Y). 

 

 

 

 

(gluon) 

(quark) 
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Probability generating function for a gluon jet (2.8) and a quark jet (2.9) will 

be 

 

 

 

 

 

 

Action of different partons are independent: from a probabilistic point of view 

the total mg gluons and mq quarks populations are evolving as (mg + mq) 

independent parton populations, each with one initial quark or gluon. This fact 

summarizes the branching Markov chain nature of the process. It can be shown 

through straightforward calculations that 

 

 

 

Moreover, since the process is homogenous in Y the transition probabilities 

obey Chapman-Kolmogorov equations in general case 

 

 

 

And for the gluon jet 

 

 

 

And for the quark jet 
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Using these additional equations (2.10), (2.12) and (2.13), we can obtain a 

probability generating function for gluons 

 

 

 

 

 

 

 

 

 

 

 

And a probability generating function for quarks can be obtained 

analogically  

 

 

We can rewrite it using P1, 0; 1, 0(Δ𝑌) = 1, P0, 1; 0, 1(Δ𝑌) = 1 

 

 

 

Inserting (2.16), (2.17) into (2.14), (2.15) and replacing 𝑌′ with 𝛥Y, then 

dividing both sides by Δ𝑌 and taking the limit as Δ𝑌 → 0, we can obtain: 

 

 

 And for quarks analogically 

 

 

 

 

(2.18) 

(2.19) 
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(2.18) and (2.19) are the forward Kolmogorov equations for the generating 

functions of the transition probabilities Pmgmqngnq( Y). But for solving our problem 

it’s necessary to get corresponding backward Kolmogorov equations, which 

immediately follows from inserting (2.16), (2.17) into (2.14), (2.15) and letting  

𝑌 → 𝛥𝑌. And then after dividing both sides by 𝛥𝑌 → 0 we obtain 

 

 For both cases of Kolmogorov equations there are initial conditions that are 

given by 

 

 

 

After this, using (2.6) and (2.7) our equations become 

 

 

 

 

 

The general theory presented here can be applied to the hypothetical situation 

where we have to deal with processes more complex than those indicated in  

(*)-(***) (e.g., g → g + g + g or q → q + g + g ...).  

We need only to identify 

 

 

 

 

 

 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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Given certain initial conditions (i.e., the presence of one gluon and no quark 

or of one quark and no gluon at Y = 0) we can ask ourselves what is the probability 

for a gluon or a quark to produce in the interval (Y+Δ𝑌) ng gluons and nq quarks 

through processes (*)-(***) under the requirement of probability conservation. 

Considering that only 3 processes are allowed, and at the same time nothing 

can happen, it follows for a gluon jet 

 

 

 

 

And for a quark jet 

 

 

 

 

Dividing by 𝛥Y and letting 𝛥Y → 0 we obtain the system of differential 

equations. 

 

 

 

 

 

We are only interested in the gluon exclusive cross sections both in a gluon- 

or a quark-jet, i.e., in P1, 0; ng, 0 (Y) and P0, 1; ng, 1 (Y), and for this reason we obtain 

 

 

 

 

 

 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
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After this, we want to explicit solutions in particular cases. Thus, we consider 

that 𝐵 = 0, 𝐴 ≠ Ã ≠ 0. It means we forbid gluons from splitting into quark-antiquark 

pair (or absence of flavours in theory). Equations for the cross sections for ng gluons 

in the gluon- and quark- jet will be 

 

 

 

 

 

 

with initial conditions 

 

 

 

1) For the gluon jet we get from (2.1) and (2.33) 

 

 

 

The corresponding generating function is 

 

Additionally, since  

 

 

 

 

 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 
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Therefore, we have a normalized cross section  

 

2) For the quark jet we get (𝜇 = 
𝐴̃

𝐴
) 

 

 

 

 

The average gluon multiplicity in the quark jet will be 

 

And the normalized exclusive cross section for producing ng gluons 

 

 

 

 

 

To sum up, (2.43) is a Polya-Eggenberger distribution, which in the limit 

𝑁𝑐 → ∞ assumes half-integer 𝜇 values, whereas (2.39) is a Furry-Yule distribution, 

corresponding to a Polya-Eggenberger distribution with 𝜇 = 1. 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 
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3. Hadronization stage 
By combining the two stages, we obtain the generating function as 

 

𝑃𝑛(𝑠) =  ∑𝑃𝑚
𝑃𝑃𝑛

𝐻(𝑚, 𝑠)

𝑚

 

Where 𝑃𝑚
𝑃 is multiple distribution (MD) for partons (2.43) (from this moment 

m is equal to ng), 𝑃𝑛
𝐻 - MD for hadrons produced from m partons on the stage of 

hadronization. 

The stage of hard fission of partons is characterized by a negative binomial 

distribution (NBD) for quark jet. 

𝑃𝑚
𝑃(𝑠) =  

𝑘𝑝(𝑘𝑝 + 1)… (𝑘𝑝 +𝑚 − 1)

𝑚!
[

𝑚̅

𝑚̅ + 𝑘𝑝
]

𝑚

[
𝑘𝑝

𝑚̅ + 𝑘𝑝
]

𝑘𝑝

 

 

Where 𝑘𝑝 = 
𝐴̃

𝐴
 and 𝑚̅ =  ∑ 𝑚𝑚 𝑃𝑚

𝑃. 

𝑃𝑚
𝑃 and generating function for MD 𝑄𝑚

𝑃  (s, z) are 

𝑃𝑚
𝑃 = 

1

𝑚!

𝜕𝑚

𝜕𝑧𝑚
𝑄𝑃(𝑠, 𝑧)|𝑧= 0 

𝑄𝑚
𝑃 (𝑠, 𝑧) =  [1 +

𝑚̅

𝑘𝑝
(1 − 𝑧)]

−𝑘𝑝

 

 𝑃𝑛
𝐻 and generating function for MD 𝑄𝑝

𝐻 (s, z) are 

𝑃𝑛
𝐻 = 𝐶𝑁𝑝

𝑛 [
𝑛̅𝑝
ℎ

𝑁𝑝
]

𝑛

[1 −
𝑛̅𝑝
ℎ

𝑁𝑝
]

𝑁𝑝−𝑛

 

𝑄𝑝
𝐻 = [1 +

𝑛̅𝑝
ℎ

𝑁𝑝
(𝑧 − 1)]

𝑁𝑝

 

𝑛̅𝑝
ℎ is an average multiplicity formed from parton on the stage of 

hadronization. 

𝑁𝑝 is maximum secondary of hadrons from parton on the stage of 

hadronization. 

 

 

 

 

 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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MD of hadrons in 𝑒+e annihilation are determined by convolution of two 

stages: cascade and hadronization (3.1). 

𝑃𝑛(𝑠) =  ∑𝑃𝑚
𝑃
𝜕𝑛

𝜕𝑧𝑛
(𝑄𝐻)2+𝑚|𝑧= 0

𝑚

 

where 2 is two quarks and m is gluons. 

Next, we simplify the second stage by approximating 
𝑛̅𝑔
ℎ

𝑁𝑔
≈

𝑛̅𝑞
ℎ

𝑁𝑞
 , assuming that 

the probabilities of hadron formation from a quark or gluon are equal. the parameter 

α = 
𝑁𝑔

𝑁𝑞
= 

𝑛̅𝑔
ℎ

𝑛̅𝑞
ℎ to differentiate between hadron jets created from quarks or gluons in 

the second stage. We also simplify by setting N = 𝑁𝑞 and 𝑛̅ℎ = 𝑛̅𝑞
ℎ. 

Thus, 

𝑄𝑞
𝐻 = [1 +

𝑛̅𝑝
ℎ

𝑁𝑝
(𝑧 − 1)]

𝑁

 

  𝑄𝑔
𝐻 = [1 +

𝑛̅𝑝
ℎ

𝑁𝑝
(𝑧 − 1)]

α𝑁

 

By substituting (3.2) and (3.6) into (3.7) and taking the derivative with 

respect to z, we obtain the MD of hadrons produced in the e +e − annihilation 

process  

𝑃𝑛(𝑠) =  Ω∑𝑃𝑚
𝑃𝐶(2+αm)𝑁

𝑛 [
𝑛̅ℎ

N
]

𝑛

[1 −
𝑛̅ℎ

N
]

(2+αm)𝑁−𝑛

𝑚

 

where 

𝑃𝑚
𝑃 =  

{
 

 [
𝑘𝑝

𝑚̅+𝑘𝑝
]
𝑘𝑝

,                                                    𝑖𝑓 𝑚 = 0

𝑘𝑝(𝑘𝑝+1)…(𝑘𝑝+𝑚−1)

𝑚!
[

𝑚̅

𝑚̅+𝑘𝑝
]
𝑚

[
𝑘𝑝

𝑚̅+𝑘𝑝
]
𝑘𝑝

, 𝑖𝑓 𝑚 > 0

 

 

The physical meaning of the six parameters, which we obtain because of 

fitting:  

• Ω is normalization factor. In our case it should be equal to 2, since the 

experimental data are presented only for even n. 

• 𝑘𝑝 = 
𝐴̃

𝐴
 is parameter showing how the quark bremsstrahlung process and 

the gluon fission process are related.  

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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• 𝑚̅ is the average multiplicity of gluons before hadronization. 

• 𝑛̅𝑝
ℎ is an average multiplicity formed from parton on the stage of 

hadronization. 

• 𝑁𝑝 is maximum secondary of hadrons from parton on the stage of 

hadronization. 

• α = 
𝑛̅𝑔
ℎ

𝑁𝑔
≈

𝑛̅𝑞
ℎ

𝑁𝑞
 is parameter entered so that there are fewer unknown 

parameters. 
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4. Fitting e+e- 
We found the parameters and their errors for energies 14, 22, 34.8, and 43.6 

GeV. 

√𝑠, 𝐺𝑒𝑉 Ω 𝑘𝑝 𝑚̅ 𝑛̅𝑝
ℎ 𝑁𝑝 α 𝜒2 

14 1.998 

± 

0.034  

16.000 

± 

2.074 

0.084 

± 

0.064 

4.465 

± 

0.095 

27.724 

± 

10.242 

0.965 

± 

0.236 

2.799 

22 1.999 

± 

0.035 

3.170 

± 

2.628 

1.959 

± 

0.759 

4.675 

± 

0.302 

27.799 

± 

14.646 

0.214 

± 

0.075 

1.633 

34.8 1.998 

± 

0.015 

7.530 

± 

1.762 

11.148 

± 

5.456 

3.972 

± 

0.238 

15.000 

± 

5.466 

0.128 

± 

0.050 

8.849 

 

43.6 2.004 

± 

0.029 

40.006 

± 

9.593 

34.925 

± 

2.822 

1.174 

± 

0.170 

7.021 

± 

2.587 

0.311 

± 

0.051 

5.865 

Table 1: parameters and their errors for energies 14, 22, 34.8, and 43.6 

 

According to this model (table 1), hadrons are formed because of breaking 

of parton jets. 

The Multiplicity Distribution graphs for different energies are presented 

here:

 

Figure 2: Multiplicity Distribution at 14 GeV 
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Figure 3: Multiplicity Distribution at 22 GeV 

 

Figure 4: Multiplicity Distribution at 34.8 GeV 

 

Figure 5: Multiplicity Distribution at 43.6 GeV 
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5. Program code 
 

#include <iostream>          

#include <vector>            

#include "TH1.h"             

#include "TF1.h"             

#include "TCanvas.h"         

#include "TSystem.h"         

#include "TRandom3.h"        

#include "TMath.h"           

#include "TGraphErrors.h"    

#include "Math/Minimizer.h"  

#include "Math/Factory.h" 

#include "Math/Functor.h" 

#include "Math/MinimizerOptions.h" 

 

Double_t fun(Double_t *x, const std::vector<double>& par) { 

    Int_t MG = 20;              

    Int_t n = x[0];             

    Double_t S, S1, S2, S3, R1, R2, R3, R4; 

    Double_t P0, Q, Q1, Q2; 

    Double_t Sum, SM; 

    Double_t R; 

    Double_t D2; 

 

    S1 = par[0] + par[1];       // kp + m 

    S2 = par[0] / S1;           // kp / (kp + m) 

    S3 = par[1] / S1;           // m / (kp + m) 
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    R1 = par[2] / par[3];       // nh / N 

    R2 = 1. - R1;               // 1 - nh / N 

    R3 = R1 / R2;               // (nh / N) / (1 - nh / N) 

    D2 = 2. * par[3];           // 2N 

     

    P0 = TMath::Power(S2, par[0]);    // [kp / (m + kp)]^kp 

    R4 = TMath::Power(R2, D2);        // (1 - nh / N)^2N 

     

    R = 1.; 

    for (int ln = 0; ln < n; ln++) { 

        R = R * (2. * par[3] - ln) * R3 / (ln + 1.);  

    } 

    R = R * R4; 

 

    Sum = 0.; 

    for (int m = 1; m <= MG; m++) { 

        S = 1; 

        for (int m1 = 1; m1 <= m; m1++) { 

            S = S * (par[0] + m1 - 1.) * S3 / m1;  

        } 

 

        Q = 1; 

        for (int l = 1; l <= n; l++) { 

            Q = Q * ((2. + par[4] * m) * par[3] - l + 1.) * R3 / l;  

        } 

 

        Q2 = TMath::Power(R2, (2. + par[4] * m) * par[3]);  

        SM = S * Q * Q2;  

        Sum = Sum + SM;  

    } 
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    Q1 = (Sum + R) * P0 * par[5];  

    return Q1; 

} 

 

Double_t fun_wrapper(Double_t *x, Double_t *par) { 

    std::vector<double> params(par, par + 6); 

    return fun(x, params);                     

} 

 

void test_22() { 

    std::vector<double> xvalues = {2., 4., 6., 8., 10., 12., 14., 16., 18., 20., 22., 24., 

26., 28.}; 

    std::vector<double> yvalues = {0.1631, 1.7797, 7.8243, 16.7981, 22.9196, 

21.5560, 

                                   14.5702, 8.2160, 3.6614, 1.6538, 0.5892, 0.1637, 0.0697, 

0.0355}; 

    std::vector<double> evalues = {0.0895, 0.2557, 0.5185, 0.7497, 0.8749, 0.8332, 

                                   0.6494, 0.4705, 0.2927, 0.1931, 0.1048, 0.0513, 0.0312, 

0.0253}; 

 

    for (size_t i = 0; i < yvalues.size(); i++) { 

        yvalues[i] /= 100.; 

        evalues[i] /= 100.; 

    } 

 

        TGraphErrors *gr = new TGraphErrors(xvalues.size(), xvalues.data(), 

yvalues.data(), nullptr, evalues.data()); 

 

    const double mu_0 = 4.91;         
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    const double m_mean_0 = 3.01;     

    const double nh_0 = 4.34;         

    const double N_0 = 10.2;         

    const double alpha_0 = 0.2;       

    const double omega_0 = 2.0;      

 

    

    TF1* func = new TF1("probability", fun_wrapper, xvalues.front(), 

xvalues.back(), 6); 

    func->SetParameter(0, mu_0); 

    func->SetParameter(1, m_mean_0); 

    func->SetParameter(2, nh_0); 

    func->SetParameter(3, N_0); 

    func->SetParameter(4, alpha_0); 

    func->SetParameter(5, omega_0); 

     

    ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2"); 

    

    gr->Fit("func"); 

    gr->Draw("ACP"); 

    func->Draw("SAME"); 

 

    std::cout << "chi2 = " << func->GetChisquare() << std::endl; 

    std::cout << "mu = " << func->GetParameter(0) << " +- " << func-

>GetParError(0) << std::endl; 

    std::cout << "m_mean = " << func->GetParameter(1) << " +- " << func-

>GetParError(1) << std::endl; 

    std::cout << "nh = " << func->GetParameter(2) << " +- " << func->GetParError(2) 

<< std::endl; 

    std::cout << "N = " << func->GetParameter(3) << " +- " << func->GetParError(3) 
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<< std::endl; 

    std::cout << "alpha = " << func->GetParameter(4) << " +- " << func-

>GetParError(4) << std::endl; 

    std::cout << "omega = " << func->GetParameter(5) << " +- " << func-

>GetParError(5) << std::endl; 

} 
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excellence. 

Words cannot fully capture the depth of my appreciation for all that she has 

done—her wisdom, patience, and genuine care have shaped me in ways I will 

forever cherish. From the bottom of my heart, thank you, Dr. Kokoulina, for 

being an extraordinary mentor and an inspiring presence in my life. 
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