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Abstract

The transverse momentum distribution of particles produced in proton-proton and heavy-ion colli-
sions is usually described by the power-law function. Recently, it has been shown that the phe-
nomenological distribution of the Tsallis transverse momentum distribution adequately describes the
experimental data for collisions at relativistic energies such as those obtained in laboratories such as
the LHC and RHIC. The exact results for this distribution are presented as a series expansion using
integral expressions for the Tsallis statistics (normalized and unnormalized). Zero-term approxima-
tion expressions for the Tsallis particle statistics are also obtained.

1 Introduction

Collisions between proton-proton or lead-nuclei provide insight into the properties of nuclear matter
and its constituents. At higher energies, quarks and gluons inside the nucleons interact and create
a short-lived medium called quark-gluon plasma. Also, before the creation of the medium, highly
energetic particles (quarks, and gluons) called ’jets’ are also created and pass through the medium.
After a certain time, the quarks and gluons hadronize and create π,K, p, etc. Momentum distributions
of these hadrons are experimentally observed, and there have been many attempts to explain these
distributions. One such attempt is inspired by the generalized statistical mechanics proposed by C.
Tsallis, and in this report, we discuss that.

Medium

Jet Particles produced

Detectors

Figure 1: A jet with a clearly defined direction collides with a medium, producing new particles that
are detected.

2 Participant-spectator model

Consider a ”projectile” nucleus that moves in a straight line while interacting with a target nucleus.
After the collision, an interaction zone is generated due to the overlap of the two nuclei. This zone
is well defined for each impact parameter b which is the transverse distance between the centers of
the colliding nuclei. In the interaction zone, the nucleons that interact are referred as ’participants’,
while the remaining nucleons of the projectile and the target are referred to as ’spectators’. Thus,
participants begin to interact with each other while spectators are not significantly affected by the
collision and continue with their movement. During the formation and the expansion of the interaction
zone, there are enough interactions between the participants to establish a local thermal equilibrium
in the zone. Finally, the interaction zone exhibits decay due to emission. When the collision energy
is relativistic, the interaction zone generated by the participants create a QGP [1]. The figure 2 is a
diagram of the participant-spectator model before and after the collision.
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Figure 2: Participant-spectator model

3 Basics of QGP

Since the relativistic energy collisions of interest lead to the formation of a QGP, we will briefly de-
scribe the basic properties and formation of this state of matter.

At high densities or temperatures, hadronic matter loses its identity and is better described in terms
of its constituents: quarks and gluons. Quarks are elementary particles of spin 1

2
in the Standard

Model. There are six types of quarks: up(u), down(d), strange(s), charm(c), bottom or beauty(b),
and top or truth(t) [1]. These names refer to a certain degree of freedom, known as flavor, associated
with quarks. However, quarks possess another degree of freedom, called color, which is denoted by
the letters r(red), blue(b), and g(green). Matter composed is colorless, so it is a specific combination
of a certain type of quarks [1]. Gluons are carriers of strong force and they also carry colors.
We can think of QGP formation by imagining a closed system of hadrons. When the density is low,
the hadrons are far away from each other.

Figure 3: System of hadrons in low density.

At high densities and high temperatures, hadrons start to interpenetrate each other, and the con-
stituents become deconfined.
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Figure 4: Deconfinement.

As defined by Ref [1], QGP is defined as a thermalized, or near thermalized, state of quarks and
gluons, where they are free to move in a nuclear volume rather than a nucleonic volume. The study
of this type of matter is crucial in high-energy physics because theoretical models indicate that mat-
ter can only exist as a QGP beyond a critical temperature Tcr ∼ 200 MeV.
QGP is the deconfined state of strongly interacting matter. At low densities or low temperatures,
quarks are confined within hadrons. However, as the temperatures or density increases, the quarks
are no longer confined within the hadrons, resulting in a deconfined state.This is known as confinement-
deconfinement phase transition [1].
The importance of studying the QGP lies in the fact that it gives us access to the ancient microsec-
ond universe, since the QGP must have existed in the very early universe. However, the phase
transition of matter between these confined and deconfined states can be created at high energies
in laboratories. In addition to the above, the study of QGP has given us a new perspective regarding
the study of condensed matter physics, which is expanding to new domains [1].

In high-energy collisions, their constituents mix and enter a pre-equilirbium phase before forming
a QGP. The QGP has a very short lifetime of around 10−23 s. The evolution of this plasma is gov-
erned by the hydrodynamic transport equation. When equilibrium is reached, quarks and gluons
are in a deconfined state. Subsequently, as the system expands, its density decreases and it cools
down, causing the quarks and gluons to undergo hadronisation, i.e. to form hadrons. When the
average distance between hadrons exceeds the range of strong interaction, the hadrons decouple
and freeze out [1].

This is known as kinetic freeze-out. Hadrons from the kinetic freeze-out surface will be detected
in the detector.

4 Particle Spectrum, number density and Boltzmann-Gibbs dis-
tribution

For hadron collisions, the average number of particles1 detected in each collision is given by the
expression:

N =
g

(2π)3

∫
d3p d3x fsp, (1)

1Natural units are used throughout the text: c = h̄ = kB = 1.
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where the parameter g indicates the degeneracy 2 and fsp is the single particle distribution function,
e.g. the Boltzmann-Gibbs distribution function

fsp =
1

eβE ± 1
, (2)

with β = 1
T

the Gibbs parameter. In the case where the distribution function is a homogeneous
function, the expression for N takes the form

N =
gV

(2π)3

∫
d3p fsp =⇒ E

dN

d3p
=

gV

(2π)3
Efsp. (3)

Since
p2 = p2x + p2y + p2z = p2T + p2z, (4)

the differential d3p = dpxdpydpz can be written as d3p = d2pTdpz, so that we can write

E
dN

d2pTdpz
=

gV

(2π)3
Efsp, (5)

where pT and pz are the transverse and longitudinal momentum, respectively, at the collision, and E
is given by the relativistic relation

E2 = p2 +m2 = p2T + p2z +m2 = m2
T + p2z, (6)

with mT the transverse mass, which is a scalar, so what is a Lorentz invariant3. The latter allows us
to write the following relation

E2 − p2z = m2
T , (7)

where we can choose a suitable parameterization for the variables E and pz, namely

E = mT cosh y, (8)

pz = mT sinh y, , (9)

where the parameter y is called rapidity. With this parameterization, equation (5) is expressed in the
following form

EdN

d2pTEdy
=

gV

(2π)3
Efsp, (10)

which can be integrated with respect to an azimutal angle ϕ (0 ≤ ϕ ≤ 2π) by expressing d2pT in polar
coordinates, which finally leads to the following result

dN

pTdpTdy
=

gV

(2π)2
Efsp. (11)

It is important to note that the right side of the equation (11) represents the theoretical development.
This result should be compared to the observed quantity in the experiments, which is located on the
left side of the equality. In the case of the Boltzmann-Gibbs distribution, equation (11) takes the form

dN

pTdpTdy
=

gV

(2π)2
mT cosh ye−βmT coshy. (12)

However, according the experiments, the Boltzmann-Gibbs statistics does not describe the experi-
mental data. The Boltzmann-Gibbs statistics uses a definition for entropy [2], which is the familiar
expression

SBG = −
∑
i

pi ln(pi). (13)

2For example, for pions, the value of g is 2 (for π+ and π−). In contrast, for protons, the value of g is 4 (two for p±) .
3In the case where the boost is along the z-axis.
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Since entropy is not a universal function, Boltzmann-Gibbs statistics only describe a certain number
of systems with certain characteristics. The collisions of interest are not described by this statistic,
as evidence by experimental data. Therefore, other type of statistic must be used to described
the spectrum of particles produced during collisions. The distribution of transverse momentum of
particles produced proton-proton and heavy-ions collisions is described using Power-law function
based on the Tsallis statistics. These functions provide an objective and precise description of the
phenomenon. Below is a description of Tsallis statistic based on the expression proposed by C.
Tsallis for entropy. This expression is used to derive the probabilities in this statistic and the correct
expressions for the Tsallis transverse momentum spectrum.

5 Tsallis statistics

In 1988, Constantino Tsallis proposed a generalization to Boltzmann-Gibbs statistical mechanics,
now known as Tsallis statistical mechanics. In this generalization, the quantity of interest is pqi , where
pi is the probability associated with an event and q is a real number such that 0 ≤ q ≤ ∞. This quan-
tity was used by Tsallis to generalize the definition of entropy to a functional from the parameter q [3].

According to the generalization of Tsallis [3], it is postulated that the entropy is expressed as fol-
lows

S =
N∑
i=1

pqi − pi
1− q

, (14)

where the parameter q is a positive number, N is the number of the possible configurations (mi-
crostates) of the system4 and the probabilities pi are normalized to unity, i.e.

N∑
i=1

pi = 1. (15)

Within the grand canonical ensemble framework, we discuss two types of Tsallis statistics: normal-
ized or Tsallis-1 statistics and unnormalized or Tsallis-2 statistics. The difference between these
statistics is in how the standard expectation values of the observables are defined. We will cover the
general formalism for both statistics to calculate the normalized probabilities pi, and determine the
expressions for the particle transverse momentum distribution.

The following detailed study of Tsallis statistics follows Ref [4].

5.1 Tsallis-1 in grand canonical ensemble

In this case, the generalized expectation values for the observables are defined as follows.

⟨A⟩ =
∑
i

piAi. (16)

In the grand canonical ensemble scheme, the thermodynamic potential is

Ω = ⟨H⟩ − TS − µ⟨N⟩

=
∑
i

pi

[
Ei − µNi − T

pq−1
i − 1

1− q

]
,

(17)

4Under the assumption that the spectrum of the system is discrete.
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where ⟨H⟩ =
∑

i piEi is the mean energy of the system, ⟨N⟩ =
∑

i piNi is the mean of particles
and Ei and Ni are the energy and number of particles, respectively, in the i-th microstate of the
system. Now, to determine the analytical form of the probabilities pi, we must remember that in
the grand canonical ensemble, the set of these probabilities is determined by the local extremes
(restricted by the normalization condition (15)) of the thermodynamic potential (17). As the method
of the Lagrange multipliers [2] is utilized to determine extrema, we begin by defining the following
function:

Φ = Ω− λφ, (18)

where
φ =

∑
i

pi − 1 (19)

is a additional function and λ is an arbitrary real constant. The local extrema of the function Φ are
determined by the equation

∂Φ

∂pj
= 0. (20)

By substituting equations (17) and (19) into equation (20), we have

∂Φ

∂pj
=

∂

∂pj

(∑
i

pi

[
Ei − µNi − T

pq−1
i − 1

1− q

]
−λ

[∑
i

pi − 1

])

=
∑
i

(
− T (q − 1)pq−1

i

1− q
+

[
Ei − µNi − T

pq−1
i − 1

1− q

]
− λ

)
δij = 0,

(21)

given that ∂Ei

∂pj
= ∂Ni

∂pj
= 0. Thus

Tpq−1
j

(
1− 1

1− q

)
= λ− Ej + µNj +

T

q − 1
, (22)

which gives

pq−1
j =

q − 1

q

Λ− Ej + µNj

T
+

1

q
+
q − 1

q

= 1 +
q − 1

q

Λ− Ej + µNj

T
,

(23)

where Λ = λ− T . Therefore

pi =

[
1 +

q − 1

q

Λ− Ei + µNi

T

] 1
q−1

=⇒
∑
i

[
1 +

q − 1

q

Λ− Ei + µNi

T

] 1
q−1

= 1. (24)

When q → 1, the Gibbs probability distribution is recovered:

pi = exp

(
Λ− Ei + µNi

T

)
. (25)

A comparison of this expression with the probabilities for the grand canonical ensemble reveals that
the partition function is

Z =
∑
i

exp[−(Ei − µNi)/T ]. (26)

7



Given the expression for the probabilities, we can explicitly write the expectation values of the ob-
servables as follows:

⟨A⟩ =
∑
i

Ai

[
1 +

q − 1

q

Λ− Ei + µNi

T

] 1
q−1

. (27)

To express the probabilities and normalization condition (written in (24), as well as the expectation
values (27), it is convenient to use an integral representation with the help of the following expres-
sions for the integral representation of the Gamma function [5, 6]:

x−y =
1

Γ(y)

∫ ∞

0

ty−1e−txdt, Re(y) > 0, (28)

xy−1 = Γ(y)
i

2π

∮
C

(−t)−ye−txdt, Re(x) > 0, |y| <∞. (29)

Thus, for q < 1, the probabilities are as follows:

pi =
1

Γ
(

1
1−q

) ∫ ∞

0

t
1

1−q e

−t

[
1+ q−1

q

Λ−Ei+µNi
T

]
dt, (30)

while for q > 1, the probabilities are expressed as:

pi = Γ

(
q

q − 1

)
i

2π

∮
C

(−t)
q

1−q e

−t

[
1+ q−1

q

Λ−Ei+µNi
T

]
dt. (31)

The equation for the norm is expressed as follows:

1

Γ
(

1
1−q

) ∫ ∞

0

t
1

1−q e
−t

[
1+ q−1

q

Λ−ΩG(β′)
T

]
dt = 1 for q < 1, (32)

and

Γ

(
q

q − 1

)
i

2π

∮
C

(−t)
q

1−q e
−t

[
1+ q−1

q

Λ−ΩG(β′)
T

]
dt = 1 for q > 1, (33)

where β′ = t(1− q)/qT , and ΩG(β
′) = − 1

β′ZG(β
′) with Z =

∑
i(β

′) =
∑

i e
β′(Ei−µNi), and the expecta-

tion values take the following form in this integral representation

⟨A⟩ = 1

Γ
(

1
1−q

) ∫ ∞

0

t
q

1−q e
−t

[
1+ q−1

q

Λ−ΩG(β′)
T

]
⟨A⟩G(β′)dt

for q < 1 (34)

and

⟨A⟩ = Γ

(
q

q − 1

)
i

2π

∮
(−t)

q
1−q e

−t

[
1+ q−1

q

Λ−ΩG(β′)
T

]
⟨A⟩G(β′)dt

for q > 1,

(35)

where
⟨A⟩G(β′) =

1

ZG(β′)

∑
i

Aie
−β′(Ei−µNi). (36)

The equations (34) and (35) link the statistical averages in the formalism of the Tsallis-1 statistics
with the corresponding statistical averages of the Boltzmann-Gibbs statistics in equation (36) [4].
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Transverse momentum distribution in Tsallis-1 statistics

From the expressions for the statistical averages in Tsallis statistics 1, we can write the correspond-
ing expressions for the transverse momentum distribution in the grand canonical ensemble scheme.
In the case of an ideal gas [4], these expression can be expanded into a series as

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

∞∑
n=0

1

n!Γ
(

1
1−q

)
×
∫ ∞

0

t
q

1−q e−t[1+ q−1
q

Λ
T ] (−β′ΩG(β

′))n

eβ′(mT cosh y−µ) + η
dt

for q < 1

(37)

and

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

∞∑
n=0

Γ
(

q
q−1

)
n!

i

2π

×
∮
C

(−t)
q

1−q e−t[1+ q−1
q

Λ
T ] (−β′ΩG(β

′))n

eβ′(mT cosh y−µ) + η
dt

for q > 1,

(38)

where pT is the tranverse momentum, mT is the tranverse mass, and y is the rapidity. The norm
function Λ can be calculated through equation (24) which in the grand canonical ensemble for both
quantum and classical statistics of particles in integral representations (equations (32) and (33)) can
be expanded into a series as

∞∑
0

1

n!Γ
(

1
1−q

) ∫ ∞

0

t
q

1−q e−t[1+ q−1
q

Λ
T ] (β′ΩG(β

′))
n
dt = 1 for q < 1 (39)

and
∞∑
0

Γ
(

q
q−1

)
n!

i

2π

∮
(−t)

q
1−q e−t[1+ q−1

q
Λ
T ] (β′ΩG(β

′))
n
dt = 1 for q > 1, (40)

with

−β′ΩG(β
′) =

∑
p,σ

ln
[
1 + ηe−β′(εp−µ)

] 1
η
, (41)

what is the thermodynamic potential for an ideal gas in Boltzmann-Gibbs statistics whose energy
per particle is εp =

√
p2 +m2 and m is the mass of a particle.

Maxwell-Botzmann statistics of particles

In the case of Maxwell-Boltzmann statistics, we consider the limit η → 0 where the thermodynamic
potential of the ideal gas of the Boltzmann-Gibbs statistics (41) takes the form

ΩG(β
′) = − gV

(2π)2
m2

β ′2
eβ

′µK2(β
′m), (42)
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where Kν is the modified Bessel function of the second kind. Substituting this thermodynamic po-
tential into equations (39) and (40), and taking the limit η → 0, we obtain the norm equation for the
Maxwell-Boltzmann statistics of particles as

∞∑
0

ωn

n!

1

Γ
(

1
1−q

) ∫ ∞

0

t
q

1−q
−ne−t[1+ q−1

q
Λ+µn

T ]

(
K2

(
t(1− q)m

qT

))n

dt for q < 1

(43)

which can be briefly written as
∞∑
0

ϕ(n) = 1 (44)

and
∞∑
0

−(ω)n

n!
Γ

(
q

1− q

)
i

2π

∮
C

(−t)
q

1−q
−ne−t[1+ q−1

q
Λ+µn

T ]

(
K2

(
t(1− q)m

qT

))n

dt for q > 1

(45)

where

ω =
gV Tm2

2π2

q

1− q
. (46)

Then, by substituting equation (24) into the equations for the transverse momentum distribution
((37) and (38)) and taking the limit η → 0, we obtain the transverse momentum distribution for the
Maxwell-Boltzmann statistics [4]. These expressions are as follows:

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

∞∑
n=0

ωn

n!

1

Γ
(

1
1−q

)
×
∫ ∞

0

t
q

1−q
−ne

−t
[
1+ q−1

q

Λ−mT cosh y+µ(n+1)

T

]

×
(
K2

(
t(1− q)m

qT

))n

dt for q < 1

(47)

and

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

∞∑
n=0

(−ω)n

n!
Γ

(
q

q − 1

)
× i

2π

∮
C

(−t)
q

1−q
−ne

−t
[
1+ q−1

q

Λ−mT cosh y+µ(n+1)

T

]

×
(
K2

(
t(1− q)m

qT

))n

dt for q > 1.

(48)

Zeroth term aproximation

I we kepp only the zeroth order term (n = 0) in the series expansion of equation (39) and (40), we
obtain

1

Γ
(

1
1−q

) ∫ ∞

0

t
q

1−q e−t[1+ q−1
q

Λ
T ]dt =

[
1 +

q − 1

q

Λ

T

] 1
q−1

= 1 for q < 1, (49)
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and

Γ

(
q

q − 1

)
i

2π

∮
C

(−t)
q

1−q e−t[1+ q−1
q

Λ
T ]dt =

[
1 +

q − 1

q

Λ

T

] 1
q−1

= 1 for q > 1, (50)

where we have used equations (28) and (29). This tells us that the norm function Λ is zero in this
order. Substituting this value into the equations for the distribution of the transverse momentum (37)
and (38) and considering only the zeroth term, we obtain

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

× 1

Γ
(

1
1−q

) ∫ ∞

0

t
q

1−q e−t 1

eβ′(mT cosh y−µ) + η
dt

for q < 1

(51)

and

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

× Γ

(
q

q − 1

)
i

2π

∮
C

(−t)
q

1−q e−t 1

eβ′(mT cosh y−µ) + η
dt

for q > 1.

(52)

According to the following equation

1

ex + η
=

∞∑
k=0

(−η)ke−x(k+1), where |e−x| < 1, (53)

the above expressions can be rewritten as

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

×
∞∑
k=0

(−η)k 1

Γ
(

1
1−q

) ∫ ∞

0

t
q

1−q e
−t

[
1+(k+1) 1−q

q

mT cosh y−µ

T

]
dt

=
gV

(2π)2
pTmT cosh y

×
∞∑
k=0

(−η)k
[
1 + (k + 1)

1− q

q

mT cosh y − µ

T

] 1
q−1

for q < 1,

(54)

and

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

×
∞∑
k=0

(−η)kΓ
(

q

q − 1

)
i

2π

∮
C

(−t)
q

1−q e
−t

[
1+(k+1) 1−q

q

mT cosh y−µ

T

]
dt

=
gV

(2π)2
pTmT cosh y

×
∞∑
k=0

(−η)k
[
1 + (k + 1)

1− q

q

mT cosh y − µ

T

] 1
q−1

for q > 1,

(55)
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considering equations (28) and (29) and using β′ = (1− q)qT . For both cases (q < 1 and q > 1) the
same expression for the distribution of the transverse momentum is obtained, which is valid for the
values η = −1, 0, 1. In particular, in the case of the Maxwell-Boltzmann statistic for particles (η = 0),
the transverse momentum distribution at order zero is

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

[
1 +

1− q

q

mT cosh y − µ

T

] 1
q−1

. (56)
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-
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Figure 5: Plot of the zeroth order function of the transverse momentum distribution for the π−-
particles produced in p-p collisions obtained by the ALICE Collaboration at

√
s = 0.9 TeV [7]. The

parameters [4] of the Tsallis-1 statistical fit are: rapidity y = 0, temperature T = 71.837 MeV, chem-
ical potential µ = 0, radius R = 4.743 fm, entropic parameter q = 0.873 and mass m = 139.57 MeV
(pion mass).
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Figure 6: Plot of the zeroth order function of the transverse momentum distribution for the π−particles
produced in the p-p collisions obtained by the NA61/SHINE Collaboration at

√
s = 17.3 GeV [8]. The

parameters of the Tsallis-1 statistical fit are [4]: rapidity y = 0, temperature T = 90.574 MeV, chemical
potential µ = 0, radius R = 3.140 fm, entropic parameter q = 0.931 and mass m = 139.57 MeV (pion
mass).

5.2 Tsallis-2 statistics in the grand canonical ensemble

The Tsallis-2 statistics, or Tsallis unnormalized statistics, uses the same definition of entropy as
the Tsallis-1 statistics with the probabilities pi of the microstates normalized to unity. However, as
mentioned above, the difference between these statistics lies in the definition of the expectation
values, which in this case are

⟨A⟩ =
∑
i

pqiAi. (57)

In this case, the thermodynamic potential Ω of the grand canon ensemble takes the form

Ω = ⟨H⟩ − Ts− µN

=
∑
i

pqi

[
Ei − µNi + T

p1−q
i − 1

1− q

]
,

(58)

where the expression for entropy is conveniently rewritten as

S = −
∑
i

pi

(
p1−q
i − 1

1− q

)
. (59)

Analogously to the case of Tsallis-1 statistics, using the method of the Lagrange multipliers [2], we
can find the expression for the probabilities pi, which are given by the equation

∂φ

∂pj
= 0, (60)
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where

φ = Ω− λ

(∑
i

−1

)
. (61)

The method of the Lagrange multipliers leads us to the fact that in this case the probabilities pi have
the following form

pi =
1

Z

[
1− (1− q)

Ei − µNi

T

] 1
1−q

, (62)

with

Z =
∑
i

[
1− (1− q)

Ei − µNi

T

] 1
1−q

, (63)

where Z ≡= [(1−(1−q)λ/T )/q]
1

1−q which is the norm function. Like the partition function, it is related
to the Lagrange multiplier λ. As with the probabilities, norm function, and expectation values for the
Tsallis-1 statistics, we write these results in an integral representation for the Tsallis-2 statistics.
Thus, using equations (28) and (29), we can write for the probabilities

pi =
1

Z

1

Γ
(

1
q−1

) ∫ ∞

0

t
1

q−1
−1e−t[1−(1−q)

Ei−µNi
T ]dt

for q > 1,

(64)

and

pi =
1

Z
Γ

(
2− q

1− q

)
i

2π

∮
C

(−t)
1

q−1
−1e−t[1−(1−q)

Ei−µNi
T ]dt

for q < 1,

(65)

so the partition function in the integral representation takes the following form

Z =
1

Γ
(

1
q−1

) ∫ ∞

0

t
1

q−1
−1e

−t

[
1−(1−q)

ΩG(β′)
T

]
dt

for q > 1

(66)

and

Z =Γ

(
2− q

1− q

)
i

2π

∮
C

(−t)
1

q−1
−1e

−t

[
1−(1−q)

ΩG(β′)
T

]
dt

for q > 1,

(67)

wehre β′ = t(q − 1)/T and ΩG(β
′) = 1

β′ZG(β
′). Equations (64) and (65), as equations (30) and

(31), are the link between the probability distributions of the Tsallis-2 statistics and the probability
distributions of the Boltzmann-Gibbs statistics, while the equations (66) and (67) link the partition
function in Tsallis-2 statistics with the thermodynamic potential of the Boltzmann-Gibbs statistics [4].
In the integral representation, the statistical averages of observables are

⟨A⟩ = 1

Zq

1

Γ
(

q
q−1

) ∫ ∞

0

t
1

q−1 e
−t

[
1−(1−q)

ΩG(β′)
T

]
⟨A⟩G(β′)dt

for q > 1,

(68)
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and

⟨A⟩ = 1

Zq
Γ

(
1

1− q

)
i

2π

∮
C

(−t)
1

q−1 e
−t

[
1−(1−q)

ΩG(β′)
T

]
⟨A⟩G(β′)dt

for q < 1,

(69)

where ⟨A⟩G(β′) are the statistical averages of Boltzmann-Gibbs statistics defined in equation (36).

Transverse momentum distribution in the Tsallis-2 statistics

Given the expressions (68) and (69) for the statistical averages, the distribution of the transverse
momentum in the Tsallis-2 statistic is obtained in this case. For an ideal gas [4], this distribution is
expressed as

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

∞∑
n=0

1

n!ZqΓ
(

q
q−1

)
∫ ∞

0

t
1

q−1 e−t (β′ΩG(β
′))n

eβ′(mT cosh y−µ) + η
dt

for q > 1,

(70)

and

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

∞∑
n=0

Γ
(

1
1−q

)
n!Zq

i

2π∮
C

(−t)
1

q−1 e−t (β′ΩG(β
′))n

eβ′(mT cosh y−µ) + η
dt

for q < 1,

(71)

where the values η = 1, 0,−1 correspond to the Fermi-Dirac, the Maxwell-Boltzmann, and the Bose-
Einstein statistics, respectively [4]. Regarding the partition function Z, their integral representation
can be expanded into a series as

Z =
∞∑
n=0

1

n!Γ
(

1
q−1

) ∫ ∞

0

t
1

q−1
−1e−t(β′ΩG(β

′))ndt

for q > 1,

(72)

and

Z =
∞∑
n=0

Γ
(

2−q
1−q

)
n!

i

2π

∮
C

(−t)
1

q−1
−1e−t(β′ΩG(β

′))ndt

for q < 1.

(73)

It is worth noting that by taking n = 0 and by virtue of equations (28) and (29), the partition function
is Z = 1. This result will be useful in computing the zeroth term approximation of the transverse
momentum distribution in the Tsallis-2 statistics.
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Maxwell-Boltzmann statistics of particles

As in the case of the Tsallis-1 statistics, the expressions for the Maxwell-Boltzmann statistics of
particles can be written explicitly by taking the limit η → 0 [4]. Substituting equation (42) into the
above expressions for the partition function, we obtain

Z =
∞∑
n=0

ωn

n!Γ
(

1
q−1

)
×
∫ ∞

0

t
1

q−1
−1e−t[1+(1−q)µn

T ]

×
(
K2

(
t(q − 1)m

T

))n

dt

for q > 1,

(74)

which can be briefly written as

Z =
∞∑
0

ψ(n), (75)

and

Z =
∞∑
n=0

(−ω)n

n!
Γ

(
2− q

1− q

)
i

2π

×
∮
C

(−t)
1

q−1
−1−ne−t[1+(1−q)µn

T ]

×
(
K2

(
t(q − 1)m

T

))n

dt

for q < 1,

(76)

where

ω =
gV Tm2

(2π)2
1

q − 1
. (77)

This expressions are the partition function for the Maxwell-Boltzmann statistics of particles in the
Tsallis-2 statistics [4]. In the same way as in equation (42), and taking the limit η → 0 in equations
(70) and (71), we obtain the transverse momentum distribution for the Maxwell-Boltzmann statistics
of particles in the Tsallis unnormalized or Tsallis-2 statistics, namely

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

∞∑
n=0

ωn

n!

1

Zq

1

Γ
(

q
q−1

)
×
∫ ∞

0

t
1

q−1
−ne

−t
[
1−(1−q)

mT cosh y−µ(n+1)

T

]

×
(
K2

(
t(q − 1)m

T

))
dt

for q > 1,

(78)
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and

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

∞∑
n=0

(−ω)n

n!

1

Zq
Γ

(
1

1− q

)
× i

2π

∮
C

(−t)
1

q−1
−ne

−t
[
1−(1−q)

mT cosh y−µ(n+1)

T

]

×
(
K2

(
t(q − 1)m

T

))
dt

for q < 1.

(79)

Zeroth term aproximation

With n = 0 in equations (70) and (71) and using equation (53), the transverse momentum distribution
is

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

∞∑
k=0

(−η)k 1

Γ
(

q
q−1

) ∫ ∞

0

t
1

q−1 e
−t

[
1+(k+1)(q−1)

mT cosh y−µ

T

]
dt

=
gV

(2π)2
pTmT cosh y

∞∑
k=0

(−η)k
[
1 + (k + 1)(q − 1)

mT cosh y − µ

T

] q
1−q

for q > 1,

(80)

and

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

∞∑
k=0

(−η)kΓ
(

1

1− q

)
i

2π

∮
C

(−t)
1

q−1 e
−t

[
1+(k+1)(q−1)

mT cosh y−µ

T

]
dt

=
gV

(2π)2
pTmT cosh y

∞∑
k=0

(−η)k
[
1 + (k + 1)(q − 1)

mT cosh y − µ

T

] q
1−q

for q < 1,

(81)

where β′ = t(q−1)/T and equations (28) and (29) are used. The expressions (80) and (81) are valid
for η = 1, 0,−1, i.e. for the Fermi-Dirac, Maxwell-Boltzmann, and Bose Einstein statistics of particles,
respectively. In the case of η = 0, the distribution of the transverse momentum at the order of zero
has the form

dN

dpTdy
=

gV

(2π)2
pTmT cosh y

[
1 + (q − 1)

mT cosh y − µ

T

] q
1−q

(82)

Formally, this result can be derived from the distribution of the transverse momentum in the normal-
ized Tsallis or Tsallis-1 statistics by transforming the parameter q → 1/q in equation (56) [4].

6 Summary and conclusions

Analytical expressions have been derived for the distribution of transverse momentum in the Tsallis
statistics, normalized and unnormalized, within the framework of the grand canonical ensemble. The
exact results are presented as a series expansion using integral representations of the distribution.
Additionally, we have obtained the expression in the zeroth term approximation of the transverse
momentum distribution for the Maxwell-Boltzmann (η = 0), Fermi-Dirac (η = 1) and Bose-Einstein
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(η = −1) statistics of particles. In addition, the zero-order function was plotted for certain values of
the parameters of the Tsallis-1 statistical fit for the transverse momentum distribution obtained for the
π−- particles produced in the p− p collisions by the ALICE Collaboration at

√
s = 0.9 TeV and by the

NA61/SHINE Collaboration at
√
s = 17.3 GeV. Furthermore, the discussion of the Tsallis statistics

shows that the zeroth term approximation of the unnormalized Tsallis statistics (82) can be obtained
from the zeroth term approximation of the Tsallis normalized statistics (56) by transformation of the
entropic parameter q → 1/q.
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