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Abstract
If the symmetry of inversion and the symmetry with respect to time reversal is broken in

ferromagnetics, a superconductor-ferromagnetic-superconductor (SFS) Josephson junction (JJ)
can exhibit set of interesting features, including the change of the current-phase relation, where
superconducting current turns to be linked with magnetic moment. Hence, manipulate the
magnetic properties by Josephson current can be achieved. This type of SFS JJ is referred as
φ0-Josephson junction.

This study conducts analyses of the IVC-characteristics for point contact φ0 Josephson
Junctions. We demonstrate the manifestation of ferromagnetic resonance (FMR) in the IVC
and magnetization dynamics. The dynamics of the Josephson phase and magnetization within
the ferromagnetic layer, is described by a system of coupled non-linear differential equations.
This system of equations is obtained from the Landau-Lifshitz-Gilbert (LLG) equation and
Josephson relations for current and phase difference using Resistively and capacitively shunted
Josephson junctions (RCSJ) model.
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1 Introduction

The Josephson effect, predicted by Brian Josephson in 1962, is based on the tunnelling of
coupled electrons through an insulating barrier [1, 2]. If a non-superconducting nano-sized
material is located between two layers of a superconductor, the superconducting current will
pass through this material - that is what Josephson effect means. If there is a ferromagnetic
between these two superconductor layers, then it is called the anomalous Josephson effect [3].
Unlike Josephson effect which reflects the superconducting phenomenon, the anomalous effect
links superconductivity and magnetism, which until recently were not combined.

First prerequisite for research into the Josephson effect was the search for weak ferromagnetic
alloys to measure supercurrents via superconductor-ferromagnetic-superconductor Josephson
junctions. The supercurrents in SFS junctions were firstly observed by experiments and by
study of Nb/CuxNi1−x/Nb Josephson junctions. There was a transition from 0-state to π-
state. The π-state is characterized by a phase shift of π in the junction’s ground state. The
formula, giving this state is described by Is(φ) = Ic sin(φ), where Ic is the critical current,
and φ is the phase difference between the superconductor electrodes. Recently, in Ref.[4] the
authors report the observation of anomalous phase shift φ0 in Bi2Se3 Josephson junctions and
provide a direct measurement of the spin-orbit coupling strength. Moreover, in φ0 junction a
full magnetization reversal is demonstrated by using electric current pulse [5], while a unique
possibility of controlling the magnetization dynamics via external bias current and series of
specific magnetization trajectories has been reported in Ref.[6].

Moreover, π state was introduced in the first place by the prediction of Bulaevskii, in which
it was proposed at the Josephson tunnel junction with magnetic impurities in the barrier at high
field. Additionally they observed that a superconducting ring with a π junction could generate
a spontaneous current and magnetic flux [7]. The identification of the π junction encouraged
further experimental investigation, resulting in an elaborate explanation of some of the novel
effects observed under different ferromagnetic alloy interlayer. Steps from 0 to π state in the
system of superconducting flux junctions were investigated in different ways [8]. This lead to
the development of an outlook of a complex current phase relations (CPR) as a result of studies
on the π transitions.

Recent theoretical work has predicted the generation of a long-range triplet order parameter
in structures with inhomogeneous magnetization or noncollinear orientations of magnetization
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in different F layers. The Josephson effect in junctions between unconventional superconductors
across different types of magnetic barriers has also been explored theoretically [7].

Systems exhibiting π states encompass planar SFS proximity-effect structures, tunnel junc-
tions with magnetic insulators or magnetically active interfaces, and structures with barriers
containing multiple magnetic layers.

This study will focus on the fundamental aspects of the Josephson effect in SFS junctions
containing Rashba spin-orbit coupling SOC and Rashba- Dresselhaus spin orbit coupling.

2 Model

In this section, we investigate the φ0 junction, in which the SOC provides a direct coupling
between Josephson phase and magnetic moment of ferromagnetic barrier.

We consider an SFS anomalous Josephson junction with SOC [9]. The geometry of the
considered φ0 junction is shown in Fig.1. The ferromagnetic easy-axis and the gradient of the
spin-orbit potential (n) are directed along the z-axis. Due to the interplay between the exchange
field and the SOC, the CPR of the SFS junction is given as I = Icsin(φ− φ0). The anomalous
phase shift ϕ0 is dependent on SOC and the geometry of the device. Taking into consideration
a two dimensional SOC with momenta in the x-y plane with both Rashba and Dresselhaus
contribution, the anomalous phase shift for the particular geometry considered according to [10]
can be written in the following form:

S
F

x

z

y

n my S

Figure 1: Geometry of the φ0− junction. S - superconductor, F - ferromagnet, n - unit vector
of the gradient of the spin-orbit potential. The Josephson current flows in the x diction.

φ0 = rβSOC
(βSOCmx +my) (1)

where βSOC = β/δ is the ratio between SOC coefficients, where β is the Dresselhaus
coefficient, δ is the Rashba coefficient, rβSOC

= r(1− β2
SOC) is the SOC strength accounting for

the dependence of both δ and β.
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The dynamics of magnetization of the F-layer is described by the Landau-Lifshitz-Gilbert
(LLG) equation. Here taking into account the expression 1 for the phase shift, the effective field
according to [10] is given as:

Heff =
K

M0

[Grβsocsin(φ− φ0)(βsocx̂ + ŷ) +mzẑ] (2)

where G = EJ/(Kν) is the ratio of the Josephson energy to the magnetic one where K is the
anisotropic energy term, ν is the volume of the ferromagnetic layer.

ṁx =
ωF

1 +Msα2

{
mz[hy + α(hxmz − hzmx)] + hxαm

2
y −my(hz + hyαmx)

}
ṁy =

ωF

1 +Msα2

{
mx[hz + α(hymx − hxmy)] + hyαm

2
z −mz(hx + hzαmy)

}
ṁz =

ωF

1 +Msα2

{
my[hx + α(hzmy − hymz)] + hzαm

2
x −mx(hy + hxαmz)

}
V̇ =

1

βc

[I + Asin(ωRt)− sin(φ− φ0)− V + rβsoc(βsocṁx + ṁy)] , φ̇ = V

(3)

where βc is the McCumber parameter, mi = Mi/M0 for i = x, y, z is the normalized magnetiza-
tion, mi = Mi/M0 for i = x, y, z is the effective field normalized to K/Ms, ωF = ΩF/ωc here
the ferromagnetic resonance frequency Ωf = γK/M0 and the characteristic junction frequency
ωc = 2eRIc/h̄ and we normalize time in unites of ω−1

c , current in units of Ic, and the voltage in
unites of IcR.

From the definition of βsoc and the parameter rβsoc , we can disregard the Dresselhaus
contribution by considering βsoc = 0 thus rβsoc → r and only Rashba SOC is considered. Another
possibility is to have similar contribution of the Rashba and Dresselhaus SOC thus βsoc = 1,
leading to rβsoc = o and from expression 1 we see that this will result in the phase-shift vanishing
thus decoupling the supercurrrent and magnetic moment and we return to a model similar to
that of the SIS junction. This is intriguing since the Rashba SOC can be controlled by a gate
voltage giving the possibility of tuning βsoc, and hence the phase-shift and the supecurrent [11].

To solve this system and calculate the IV-characteristics, we assume a constant bias current
and calculate the voltage from the Josephson relation V (τ) = dθ/dτ . We employ a 4th-order
Runge-Kutta integration scheme which conserves the magnetization magnitude in time. The dc
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bias current I is normalized to the critical current I0c , and the voltage V (t) to h̄ωc/(2e). As a
result, we find the temporal dependence of the voltage in the JJ at a fixed value of bias current I.
Then, the current value is increased or decreased by a small amount, δI (the bias current step),
to calculate the voltage at the next point of the IV-characteristics. We use the final phase and
voltage achieved at the previous point of the IV-characteristics as the initial condition for the
next current point. The average of the voltage V (τ) is given by V = 1

Tf−Ti

∫ Tf

Ti
V (τ)dτ , where

Ti and Tf determine the interval for the temporal averaging. Further details of the simulation
procedure are described in Ref.[12]. The initial conditions for the magnetization components
are assumed to be mx = 0, my = 0 and mz = 1, while for the voltage and phase we take zeros.
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3 Results

3.1 Rashba SOC

In this section, we present the simulations results for solving the system of equations (3)
at different model parameters. In Fig. 2 we demonstrate the effect of spin orbit coupling "r"
on the IV-characteristic for φ0 JJ. The IV-characteristic is calculated by increasing the bias
current from 0 to Imax (here it is equal 2), then the current is decreased to 0. Since we consider
underdamped case, the IVC demonstrates hysteric effect. In the first part for increasing current,
the voltage is zero until I > Ic, then we jump to resistive state, with slope satisfy Ohm’s law.
Next, when the current decreases, and near ferromagnetic resonance (FMR) region (V=ωJ ≈
ωF , ωF/2), the IV-characteristic shows a strong nonlinear features (see upward and downward
insets). The IV-curve deviates from Ohm’s current-voltage characteristic, the degree of deviation
depends on the value of the SOC.

Figure 2: IV-characteristic for φ0 JJ at different values of r with G = 0.05. The insets show
enlarged part of the IVC at V ≈ 0.25 = ωF/2, V ≈ 0.5 = ωF respectively.

On the other hand, the effect of the energy ratio of the Josephson to the magnetic one "G"
on the IV-characteristic is shown in Fig. 3. By increasing the "G" value, the resonance region
changes dramatically and the return current changes depending on the G value in contrast to
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the case with different SOC (see inset).

Figure 3: IV-characteristic for φ0 JJ at different values of G with r = 0.4. The inset shows an
enlarged part of the IVC.

In order to show the manifestation of the FMR, we plot the IVC, mmax
y (I) and Is(I) in

Fig.4 at r = 0.7 and G = 0.05. The curve for mmax
y (I) demonstrates peaks in the resonance

regions. In this regions also, the Is(I) has finite vales, indicating and increase of suppercurrent
tunneling. In addition to this, in the IVC resonance region, a region of negative differential
resistance appears where the voltage decreases as the current increases. This is happening due
to the spin orbit interaction that leads to the connection between the Josephson phase and
magnetic moment dynamics in the considered Junction.
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Figure 4: IV-characteristic, Is and mmax
y for φ0 JJ at r = 0.7 and G = 0.05.

Next, we record the magnetization trajectory at several regions in the IVC which is shown
in Fig.4. The results are demonstrated in Fig.5 for different planes (mx,my and mz). First
row of curves relates to bias current I = 0.52 which corresponds to the resonance peak (see
Fig.4). The trajectory is represented by a circle my −mx plane, and a butterfly in mz −mx,
and my −mz planes. By increasing the current, the trajectories changes see the 2nd row for
I = 0.55. At I=1.5 the component of magnetic moment in z-direction is almost one. The above
results presents a way to control the magnetization dynamics via external bias current I. The
dynamics of magnetization is very simple here and corresponds to the rotation of the magnetic
moment around different axes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Magnetization trajectories in the planes my −mx, mz −mx, and mz −my for r = 0.7
and I = 0.52, I = 0.55, I = 1.5

In Fig. 6 we present results of a detailed fast Fourier transform (FFT) analysis of the time
dependence of the magnetization components and voltage for JJs at different biasing currents.
Comparing the results presented in Fig. 6, we find that the dynamics of magnetization in
this case is really determined by Josephson frequency. We also note the effect of the magnetic
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oscillations on Josephson current which is manifested as a small peak in the FFT of V(t) (see
inset) corresponds to the second harmonic.

(a) (b)

(c) (d)

Figure 6: (a) and (b) Fast Fourier transform for magnetic moment (my(t)) and voltage voltage
dynamics respectively at I = 0.52. (c) and (d) the same for (a,b) but for I = 1.5.
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3.2 Rashba and Dresselhaus SOC

In this section, we present simulation results for the case with Dresselhaus spin orbit coupling
(βsoc ≠ 0). Fig. 7 shows the voltage dependence of mmax

x at different βsoc. It reflects the effect
of the spin-orbit interaction on the resonance character of the Voltage and (mmax

x ) dependence.
The contribution to the Josephson current manifests itself as a deviation of the IV curve from
the linear dependence in the resonance region.

Figure 7: The voltage dependence of the maximum amplitude of mx for different values of βsoc.
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(a) (b)

Figure 8: IV-characteristic, Is and mmax
x (a), mmax

y (b) for βsoc = 0.7

Fig.8 demonstrates the manifestation of the FMR for the case with Dresselhaus SOC. We can
see an increase of the magnetization amplitude mmax

y and mmax
x in the resonance region near ωF

= 0.5. This resonance is also manifested in the IV-characteristics as the corresponding resonance
branch. We note that due to the nonlinearety in our system, which reflects the nonlinear nature
of the LLG equation, the resonance frequency decreases with an increasing in SOC or damping
in the system, i.e. the resonance realized at ωJ < ωF . So, the end of the resonance branch does
not coincide with ωF . We see also the manifestation of two FMR subharmonics corresponded to
V = ωF /2. The superconducting current which is demonstrated in this figure also reflects the
FMR.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Magnetization trajectories in the planes my −mx, mz −mx, and mz −my

for βsoc = 0.05 and I = 0.34, I = 0.47, I = 0.52

The transformation of magnetization trajectories trajectory is shown in Fig.9 for different
planes. Third line of curves relates to bias current I = 0.52 which corresponds to the resonance
peak (see Fig.8).
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(a) (b) (c)

(d) (e) (f)

Figure 10: FFT analysis of time dependencies of (a), (d) mx(t); (b), (e) my(t); (c), (f) V(t); for
βsoc = 0.05 and I = 0.34, I = 0.7 respectively.

In Fig. 10 we present the results of FFT analysis of the time dependence of the magnetization
components and voltage for JJs with the magnetic system at I = 0.34 and I = 0.7. Comparing
the results presented in Fig. 10, we find that the dynamics of magnetization in this case is
determined by Josephson frequency. The existence of half harmonics in this parameter regime
indicates that the excitation of magnetic dynamics happens parametrically.

4 Conclusion

In summary, we studied the phase and magnetic moment dynamics for φ0 JJ. The dynamics
of critical current and the IV characteristic can be affected by the coupling between Josephson
phase and magnetization in the F-layer. We demonstrate the manifestation of ferromagnetic
resonance on the current voltage characteristic and magnetization dynamics, for different type
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and values of spin orbit coupling. Due to the spin orbit coupling, a nonlinear IV curve appears
in the resonance regions, when the normalized voltage is close to the ferromagnetic resonance
frequency. In addition to this, we demonstrate the manipulation of the magnetization trajectories
by the biasing current for the proposed junction.
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