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Abstract 

Molecular dynamics (MD) simulates the collective behavior of atoms or molecules by following their 

classical equations of motion. It allows the study of the statistical and thermodynamic properties of 

physical, chemical or biological systems. 

Despite its apparent simplicity, MD has proven itself to have great accuracy as well as cost-

effectiveness, and is nowadays a key tool of the trade in multi-billion dollar industries, including, but 

not limited to, materials design and pharmaceutics. 

This report summarizes and iterates on what we learned in the course “MD-Simulation Research 

(From atomic fragments to molecular compounds)” at INTEREST program wave 10, as well as two 

other courses on nanoscale modelling and the physical foundations of MD I took at the University of 

Havana, imparted by Dr. Luis Alberto Montero and Dr. Roberto Mulet respectively. It also includes 

future perspectives to apply the learned knowledge. 

  



Introduction 

Computer simulations in the physical sciences have been cemented in the last decades, not just a 

bridge between theory and experimentation, but as a pillar of scientific enquiry in its own right. 

Simulations help tell experimenters where to look, saving valuable time and resources in the process, 

as well as being able to offer insights not immediately accessible via theoretical or experimental 

methods. 

In view of the different temporal and spatial scales involved in a physical system, a number of 

different simulation methodologies have been developed to assess the relevant phenomena in a cost-

effective way, as shown in [Figure 1]. They range from the very accurate but computationally 

demanding Post-HF quantum mechanical methods, to continuum physics, where chemical 

information is ignored. 

 

Figure 1. Typical time and length scales of different simulation techniques 

Somewhat in between is Classical Molecular Dynamics (MD), which accounting for all-atom, coarse 

grained methods and Brownian dynamics, spans timescales from several picoseconds to just short of 

a second, and spatial scales from nanometers to a few micrometers. It is a simulation method 

consisting on the propagation of classical trajectories of particles (the definition of which is not 

always straightforward) on a semiempirical potential energy hypersurface (in configuration space) 

that allows to reproduce their interactions with sufficient accuracy. 

  



Basics of MD simulations 

Most generally, (classical) MD is a computational technique for computing equilibrium and 

dynamical properties of a classical many-body system. The system moves in regular 3D-space along 

its physical trajectory as determined by Newton’s equations of motion, which are integrated within 

MD and the simulated system develops over a period of time: 

𝑭𝑖 = 𝑚𝑖𝒂𝑖 ⇒ {
𝒓̇𝑖 =

𝒑𝑖

𝑚𝑖

𝒑̇𝑖 = 𝑭𝑖

 

where 𝑚𝑖, 𝒑𝑖, 𝒂𝑖 are the mass, momentum and acceleration of the particle 𝑖. The forces acting on the 

particles explicitly relate to the inter-particle interactions modeled through the total potential energy 

𝑉({𝒓𝑗(𝑡)}) calculated from inter-particle potentials: 

𝑭𝑖 = −𝛻𝑉({𝒓𝑗}) 

the brackets {𝒓𝑗} denoting the set of all position vectors. 

Conversely, in the equivalent Hamiltonian formalism we can define the (classical) Hamiltonian via: 

𝐻({𝑟𝑖}, {𝑝𝑖}) =  𝑉({𝑟𝑖(𝑡)}) + ∑
𝑝𝑖

2(𝑡)

2𝑚𝑖

3𝑁

𝑖=1

 

where 𝑖 denotes both the particle in question and the generalized coordinate of choice.  

The evolution of the system is given via the Hamilton's equations of motion: 

𝑟̇𝑖 =
𝜕𝐻

𝜕𝑝𝑖
,      𝑝̇𝑖 = −

𝜕𝐻

𝜕𝑟𝑖
 

which is more well suited to evaluate thermodynamic properties of the system via ensemble theory, 

in which the microcanonical, canonical and isobaric/isothermal ensembles are the ones typically used.  

In order to compare the computational and experimental results, one must invoke the ergodic 

hypothesis, which states that the ensemble average of an observable 𝑓 is equal to its time average 

over infinite time: 

lim
𝑡→∞

1

𝑡
∫ 𝑓(𝜏)𝑑𝜏

𝑡𝑜+𝑡

𝑡0

= ∫𝑓(𝜉)𝑑𝜉
Γ

 

where Γ is the set of all points in pahse space. Thus, one has to ensure that the methods employed 

justify the assumption of ergodicity. The fact that the time averages are evaluated over finite time 

steps and at finite time hints to an optimum choice of computational speed and accuracy. 

Periodic Boundary Conditions 

A first important issue is the fact that the system size in all simulations is smaller than in reality. This 

is not a big problem if the forces act over a length is much smaller than the system size. However, if 

the other case is true, we need to address, and the most common way is to apply periodic boundary 

conditions (PBC). In this way, the particles in the simulation box are virtually periodically repeated 



in space to form an infinite system. In this way, the interactions between any two particles 𝑖, 𝑗 is given 

by the equation: 

𝑭𝑃𝐵𝐶(𝒓𝑖 − 𝒓𝑗) = ∑ 𝑭(|𝑟𝑖 − 𝑟𝑗 + ∑ 𝐿𝜇𝑛𝜇

3

𝜇=1

|)

𝑛

 

where, 𝐿𝜇 are vectors along the edges of the volume of the rectangular system and the sum is taken 

over all vectors 𝒏 with integer coefficients 𝑛𝜇.  

A sketch of the PBC scheme is shown in [Figure 2]. The application of boundary conditions such as 

PBC is quite time consuming, as it involves the calculation of terms of an infinite sum until 

convergence is reached. This though can be easily resolved through schemes in which not all the 

particle images are taken into account in the interactions, but a list of the nearest neighbors for each 

particle in the simulations is made. 

 

Figure 2. Sketch showing the distance vectors to the nearest neighbors of the particles in 

the simulation box at center, under periodic boundary conditions. 

 

Forces in MD 

The key point in MD simulation is the computation of inter-particle forces, that is, the use of well 

adjusted, semiempirical classical potentials.  

In simulations of physical systems, a key aspect is to model adequately the interactions between the 

particles of the system. Ongoing work is invested in developing classical inter-particle potentials. For 

this, three are the most important aspects:  

 Accuracy: the potentials need to be accurate enough for the physical systems they have been 

developed for.  

 Transferability: they need to be able to efficiently model additional systems. 

 Efficiency: they should have simple mathematical forms in order to be easily implemented 

in a computational code and not increase the computational time beyond a reasonable 

threshold.  

A potential should be able to model sufficiently the different types of bonding that can occur in a 

physical system. The particles of such a system can interact through bonds, ranging from strong 



covalent bonds up to non-directed long-range interactions. Although methodologies have been 

devised, there is no hard rule for how to develop high quality classical potentials for the problem at 

hand. 

Simple pair potentials 

The simplest many-body systems to be captured by a simple pair potential are real, monoatomic gases. 

Simple model potentials can be used in order to model covalent and long-range Van der Waals 

interactions, such as the Morse potential: 

𝑉Morse(𝑟𝑖𝑗) = 𝐷 (𝑒−2𝑎(𝑟𝑖𝑗−𝑟0) − 2𝑒−𝑎(𝑟𝑖𝑗−𝑟0)) 

and the Lennard-Jones potential, sketched in [Figure 3]: 

𝑉𝐿𝐽(𝑟𝑖𝑗) = 4𝜖 [(
𝜎

𝑟𝑖𝑗
)

12

− (
𝜎

𝑟𝑖𝑗
)

6

] 

In the last case, the 𝑟−6 term maps the dipole-dipole and London attractive forces at longer ranges, 

while the 𝑟−12 term traced back to the Pauli exclusion principle. Note that all the unknowns apart 

from paticle-particle distances are parameters which need to be tuned for each particle type. 

Accordingly, these potentials have very limited transferability on their own. 

 

Figure 3. The Lennard-Jones potential, decomposed in its attractive and repulsive parts 

Force fields for biomolecules 

Biomolecular systems are typically very flexible and can access many degrees of freedom among 

bonding and non-bonding interaction. In a biomolecular force-field, covalent interactions between 

atoms (bond-stretching (𝑉𝑏𝑜𝑛𝑑), bond-angle (𝑉𝑎𝑛𝑔𝑙), bending, dihedral-angle torsion (𝑉𝑡𝑜𝑟𝑠), and non-

bonded interactions between atoms or units in different or the same molecule (separated by more than 

two or three covalent bonds) should be properly described. Typically, the most important non-bonded 

interactions are van der Waals (𝑉𝑣𝑑𝑊) and Coulomb (𝑉𝐶𝑜𝑢𝑙). The respective total potential energy 

would be expressed as: 

𝑉𝑇𝑜𝑡 = 𝑉𝑏𝑜𝑛𝑑𝑒𝑑 + 𝑉𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 

where: 

𝑉𝑏𝑜𝑛𝑑𝑒𝑑 = 𝑉𝑏𝑜𝑛𝑑 + 𝑉𝑎𝑛𝑔 + 𝑉𝑡𝑜𝑟𝑠 



and: 

𝑉𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = 𝑉𝑣𝑑𝑊 + 𝑉𝐶𝑜𝑢𝑙 

Below we see common expressions for the different interactions: 

 

These expressions include distances and angles and a number of parameters which need to be tuned 

for a more ad-hoc category that is particle types. FF parametrization is a field of research in itself, 

and typically the parameters are chosen based on experimental (x-rays, Raman, neutron diffraction) 

as well as ab-initio QM simulations. Regarding the applicability and efficiency of an FF, often it 

cannot be applied to a variety of molecules it was not developed for. In addition, the FF parameters 

are consistent with specific solute molecules and solvent and cannot be used universally. 

Long range Coulomb interactions. Ewald summations 

In order to improve computational efficiency, one needs to dispense with terms that do not contribute 

significantly to the total potential energy of the system. This is typically done by establishing a cutoff 

range for the different interactions. This methodology fails for the long-range Coulomb interactions, 

which decay with order 𝑟−2, and thus the effective cutoff range is useless since it engulfs the entire 

system many times over, as well as being computationally inefficient to implement directly. Thus this 

case calls for a new approach, which is typically done via Ewald summations.  

The method replaces the summation of interaction energies in real space with an equivalent 

summation in Fourier space and the long-range interaction potentials are divided into two parts: a 

short-range contribution calculated in real space, and a long-range contribution which does not have 

a singularity and is calculated using a Fourier transform to wavenumber space:  
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As a result, the Ewald summation method converges faster than a direct summation and is very 

accurate. 

Considering that the calculation of long range Coulomb forces is very often the limiting factor for 

rapid force-field recalculation, potent hardware with architectures optimized to carry on this 

algorithm has been developed and currently continues to be developed [Figure 4], which is a testament 

to the importance of MD simulations in current applied research. 

 

Figure 4. Special purpose MDGRAPE hardware for, among others, the correct estimation of Ewald sums 

On system modelling 

As previously stated, the particles in the model do not need to map one-to-one to the atoms present 

in the real system. Typical examples include coarse-graining or considering polymer chains as single 

particles. Other example, more close to all-atom molecular dynamics, is the modelling of aromatic 

rings for DL_POLY, which include negatively charged particles at the center of the ring, on top and 

bottom, to account for the effect of delocalized p-orbital electrons.  

Examples of state-of-the-art force fields 

Widely employed, fine tuned force fields, some of them proprietary, include CHARMM, GROningen 

MOlecular Simulations (GROMOS), AMBER and DL_POLY. The last two we discussed in some 

detail during this interest program. In general, DL_POLY is very efficient and suited to simple atomic, 

molecular and condensed matter systems, while AMBER is specifically very well suited to 

biochemical systems and thus not generalizable beyond this domain. 

 

Environment conditions 

Given that most chemical processes of interest occur at constant temperature and pressure, it's 

important to ensure these conditions are met when performing simulations if needed. 

In classical MD simulations, setting the environmental conditions can be explicitly done using 

thermostats (for applying a finite temperature) or barostats (for applying a pressure). If none of these 

is used, the MD simulations sample the microcanonical (NVE) ensemble, as this is the ensemble 

arising from the Newtonian dynamics which conserve the total energy and volume of the system 

Thermostats 

In principle, a thermostat is based on the modification of the Newtonian dynamics in order to generate 

a statistical ensemble at a constant temperature and modulate the temperature of a system. It makes 



use of the fact that the temperature of the system is essentially the average kinetic energy of its 

constituent particles: ⟨𝐾⟩ ∝ 𝑇.  

Note that the goal of a thermostat is not to keep the temperature constant (fix the kinetic energy), but 

to ensure that the average temperature is the desired one. In order to achieve that goal, some clever 

mechanisms have been devised. Some examples include imposing an appropriate friction coefficient 

in the particle dynamics via the Langevin equation (Langevin thermostat), and adding an artificial 

particle associated with an artificial mass (Nosé thermostat). 

Barostats 

Conversely, the idea behind barostats is that the pressure in a classical N-body system is calculated 

via the "Clausius virial theorem": 

𝑃 =
2

3𝑉
(𝐾 − Ξ) 

Where 𝐾 is the kinetic energy, and Ξ is the inner virial for pairwise additive interactions, which is a 

tensor quantity dependent of each distance and force vectors. In that way, a correction of the pressure 

in simulations can be achieved via modifying this inner virial Ξ. To that end, several ways have also 

been devised, included but not limited to the Berendsen and Parinello-Rahman barostats. 

 

Numerical integration 

Newton’s equations of motion can be solved analytically only for 𝑁 < 3, where 𝑁 is the number of 

particles in the system. Otherwise, the equations can be solved only by numerical integration. 

Typically, the integration of the equations of motion is obtained by a Taylor expansion (the so-called 

Verlet type-algorithms). 

One has to take present the following criteria before choosing an integration scheme: 

 Accuracy denoting to which power of the time step the numerical trajectory will deviate from 

the exact trajectory after one integration step. 

 Energy conservation along the exact trajectory. 

 Time-reversiblity, which is a result of energy conservation and assures that moving back in 

time would lead to the same trajectories as when moving forward in time. 

 Symplecticity, which is related to the preservation of the phase-space in the simulations. It 

is physically impossible to remove or add regions in the phase-space without any external 

reason. Accordingly, the integrator should sample the phase-space, but keep it intact. 

Most state-of-the-art integrators are based on the Verlet algorithm, since simpler ones like Euler and 

Runge-Kutta integrators famously fail energy conservation in systems as simple as the harmonic 

oscillator.  

In it, the equations of motion are solved based on the current positions 𝒓𝑖(𝑡) and forces 𝑭𝑖(𝑡), and 

previous positions 𝒓𝑖(𝑡 − Δ𝑡). A Taylor expansion is taken up to order-4 for positions and velocities. 

By substracting and adding these expansions, the equations for the integration scheme are obtained: 

𝒓𝑖(𝑡 + Δ𝑡) = 2𝒓𝑖(𝑡) − 𝒓𝑖(𝑡 − Δ𝑡) +
(Δ𝑡)2

2𝑚𝑖
𝑭𝑖(𝑡) + 𝒪(Δ𝑡4) 



𝒗𝑖(𝑡) =
𝑟𝑖(𝑡 + Δ𝑡) − 𝑟𝑖(𝑡 − Δ𝑡)

2Δ𝑡
+ 𝒪(Δ𝑡3) 

The integration starts by specifying the 𝒓𝑖(𝑡) and 𝒗𝑖(𝑡) for the initial time.  

The Verlet algorithm is fast and time reversible. It is symplectic as it conserves the volume of the 

phase space as imposed by the Hamiltonian dynamics. It shows a good short-term energy 

conservation and a small long-term energy drift, while the trajectories are very close to the constant 

energy hyper-surface in phase space. A strong disadvantage of the original Verlet algorithm is that 

velocities do not enter directly, which makes the simulations at constant temperature difficult. To that 

end, schemes like Velocity-Verlet and Beeman have been devised. 

Convergence 

MD simulations span a number of spatial and temporal time scales. Based on the continuous 

methodological development and the increasing computational power, these scales are constantly 

being extended. For example, in biomolecular simulations, typically involving the modeling of 

biomolecules in a solvent, in 2001 it was possible to simulate about 106 atoms for 1 ns. In 2010, a 1 

ms simulation of a small protein in water was reported. Today, the simulation of biomolecular systems 

for 1 ms is possible. What hinders the use of very large systems and their simulations for very long 

times are mainly the computational resources, which are relevant to how fast the simulations can 

converge. 

Every simulation of a physical system needs to be converged, either this means that its minimum 

energy is found or the forces acting on the system are below a tolerance. In view of the before 

mentioned time and size scales for MD simulations, the question arises whether these time scales are 

long enough to generate reliable trajectories, properties, etc.  

Let Q be a property of a system, which needs to be determined, 𝜏𝑒𝑞𝑢𝑖𝑙 the equilibration time of the 

simulation, 𝜏𝑟𝑒𝑙𝑎𝑥 the relaxation time of property 𝑄, and 𝜏𝑠𝑎𝑚𝑝𝑙𝑒 the sampling time. Reliable results 

are expected when: 

𝜏𝑒𝑞𝑢𝑖𝑙 > 𝜏𝑟𝑒𝑙𝑎𝑥 ≫ 𝜏𝑠𝑎𝑚𝑝𝑙𝑒 

Accordingly, the choice of 𝜏𝑟𝑒𝑙𝑎𝑥(𝑄) is of high importance when targeting the property 𝑄. The time 

𝜏𝑟𝑒𝑙𝑎𝑥(𝑄) is generally better defined from the decay time of the autocorrelation function 

⟨𝑄(𝑡′)𝑄(𝑡′ + Δ𝑡)⟩.  

Now, when the simulation starts from a non-equilibrium initial state, 𝜏𝑟𝑒𝑙𝑎𝑥(𝑄) is given from the 

average rate of relaxation of 𝑄 towards the equilibrium and is measured over many non-equilibrium 

trajectories. In cases for which MD simulations starting from a different initial condition do not 

converge to the same averages for 𝑄, then 𝜏𝑟𝑒𝑙𝑎𝑥(𝑄) is longer than the simulation time and the 

simulations should run over a longer time in order to obtain reliable results for the property 𝑄. 

  



Applications and Future Goals 

MD simulation methods are well suited to describe the dynamic behavior of a host of systems 

spanning from nanoscale to mesoscale and in ranges of time spanning from nanosecond to several 

seconds. They may appropriately describe and predict thermodynamical and mechanical properties, 

as well as vibrational and rotational spectra and sample conformation space of molecules, 

macromolecules, liquid, solid-state and supramolecular systems. One of the greatest engines driving 

the continuous research and improvement of MD methodologies is the needs of the biomedical 

research sector, ranging from the understanding of biochemical and physiological pathways to drug 

research and nanobiology. 

As for me, I’m a graduate student in Nuclear Physics at the Institute of Technology and Applied 

Sciences of the University of Havana (InSTEC, in Spanish). Until very recently, my research focused 

on investigating properties of Doped Graphene Quantum Dots (GQD) relevant to biomedical 

applications, complementing experimental research at the Cuban Centre for Advanced Studies (CEA, 

in Spanish). 

GQDs are zero-dimensional nanomaterials consisting of one or several stacked flakes of graphene 

with linear dimensions in the order of nanometers. They thus exhibit quantum confining effects which 

induce size-dependent photoluminescence, as well as low toxicity and relatively facile synthesis. 

They thus exhibit a host of potential applications, ranging from thermoelectricty to cancer 

theranostics. 

While Classical MD simulations are unable to model the photoluminescence properties of GQD, as 

they depend on the electronic structure, it is extremely useful in modelling its interactions and 

interfaces with macromolecules and supramolecular structures such as lipid bilayers (important for 

describing the absorption of these particles in the cellular medium) [Figure 5], proteins (showing, for 

example, inhibition for amyloids such as those responsible for Alzheimer and Parkinson disease), and 

Nucleic Acids (to study the genotoxicity of these compounds and possibly hint at applications in 

cancer therapy). Moreover, the synthesis process and mechanism of these compounds, as well as ways 

to fine tune it to achieve desired properties, is not yet fully elucidated, and Classical MD is the tool 

of choice to emulate chemical synthesis and explain its results under a range of conditions. 

 

Figure 5. MD simulation snapshots showing stages of the self-insertion of 

a GQD inside a phosphated lipid bilayer. 



While this project was ongoing, I decided to switch research directions, concretely to astrophysics. 

That is not to say that the knowledge gained during this project is not relevant in this field too, as MD 

simulations have found a host of applications in this field, ranging from the study of the microscopic 

behavior of gas and dust clouds in the interstellar medium (in which molecules as complex as ethanol 

and benzene have been found via spectroscopic analysis, in conditions very different to those found 

on Earth), to assessing the conditions under which protocells may originate in other astronomical 

bodies, such as Jupiter's moon Europa or exoplanets. 
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