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December 2023



Abstract

The analysis of relative yields of photonuclear reactions, such as 209Bi(γ, xn),
requires a proper theoretical prediction of cross-sections. One of the main
ingredients for such cross-section calculations is the level density. Param-
eterizing the microscopically calculated level density onto a Fermi gas ex-
pression and using TALYS code for nuclear reactions, the cross-sections for
209Bi(γ, xn) reactions were obtained. These cross-sections were then used
together with GEANT4 simulations of photon flux to evaluate the relative
yields to be compared with the experimental ones.
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Chapter 1

Level density calculations

To obtain the nuclear level density for 209Bi and the daughter nuclei resulting
from 209Bi(γ, xn), the BCS model is used to include the pairing interaction
and the statistical grand partition function is used as the method of ’count-
ing’. The obtained level density ρ(t), where t is the statistical temperature,
β = 1/t, is then fitted onto the Fermi gas expression ρ(U), by the means of
excitation energy of the quasi-particles from the BCS formalism, U , and the
level density parameter a(U).

1.1 BCS pairing interaction

The Hamiltonian that describes the monopole pairing interaction, ⟨vv|V |v1v1⟩ =
−G, is expressed via second quantization creation and annihilation operators
a†k± and ak± as [1, 7]:

Ĥ =
∑
k

εk

(
a†k+ak+ + a†k−ak−

)
−G

∑
kk′

a†
k′+

a†
k′−

ak−ak+ . (1.1)

This way, the pairing interaction is included in the calculations by the right
term in (1.1), where G is the pairing strength, while the left term corre-
sponds to the non-interacting fermion system, and thus εk is the single-
particle eigenenergy. The BCS model accounts for pairing interaction, and
the single particle eigenenergies εk are taken from some standard microscopic
models, such as the Nilsson model.
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By the means of Bogoliubov transformations:

αk = uka
†
k − vkak,

αk = uka
†
k
− vkak,

where αk and αk are now the annihilation operators of the quasi-particles,
and k and k are time-reversed states such that we consider k > 0 only, the
augmented Hamiltonian Ĥ − λN̂ can be rearranged into different terms of
αk and αk, such that the term describing ground-state energy is[3, 8]:

H0 =
∑
k

(εk − λ− Ek) +
∆2

G
+
∑
k>0

Ekα
†
kαk, (1.2)

which is, unlike 1.1, diagonalized. The Ek in (1.4) represents the quasi-
particle excitation energies:

Ek =
√

(εk − λ)2 +∆2, (1.3)

and λ is the chemical potential, and ∆ is the paring gap, which describes
the pairing effect on the excitation energy. Varying augmented Hamiltonian
with respect to uk, δ ⟨BCS| Ĥ − λN̂ |BCS⟩ = 0, where |BCS⟩ is the ground
state, the so-called gap equation can be obtained[3, 7]:

2

G
=

∑
k

tanh 1
2
βEk

Ek

. (1.4)

1.2 Grand partition function

There are two popular methods of counting up the possible states from single-
particle states: combinatorial and grand partition function methods[4]. The
statistical sum is obtained using (1.2):

Z = Tre−βHo , (1.5)

and the grand partition function method is proceeded with. The logarithm
of the grand partition function is:
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lnZ = −β
∑
k

(εk − λ− Ek) + 2
∑
k

(1 + e−βEk − β
∆2

G
), (1.6)

and the system entropy is:

S = lnZ + βE − µnN − µpZ. (1.7)

The state density ρ can be found to be the inverse Laplace transform of the
continuous approximation of the grand partition function integrated over the
saddle points[4]:

ρ =
eS

(2π)
3
2

√
det

∣∣∣ ∂2S
∂µi∂µj

∣∣∣
µ0

, (1.8)

where det
∣∣∣ ∂2S
∂µi∂µj

∣∣∣
µ0

is the Hessian matrix of the entropy S at the saddle point.

The saddle point conditions give[4]:

−∂ lnZ

∂β
= E,

∂ lnZ

∂µn

= N,
∂ lnZ

∂µp

= Z, (1.9)

these relations in combination with the gap equation (1.4) and (1.6) result
in:

E =
∑
k

εk

(
1− ε− λ

Ek

tanh
1

2
βEk

)
− ∆2

G
, (1.10)

N =
∑
k

εk

(
1− ε− λ

Ek

tanh
1

2
βEk

)
, (1.11)

S = 2
∑
k

ln(1 + e−βEk) + 2β
∑
k

Ek

1 + eβEk
. (1.12)
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1.3 Calculations

A Python script was made, taking as the input the considered isotope of
bismuth, single-particle eigenenergies for protons and neutrons at the con-
sidered temperatures, and the binding energy of the considered and adjacent
isotopes. The script produces the temperature dependence of the pairing
gap, for the system of protons and neutrons separately ∆p and ∆n, entropy
S, excitation energy U = E − E0, and most importantly the level density ρ.

The level density ρ is obtained from (1.8) by knowing the entropy S, for
each value of β = 1/t. The entropy S is obtained for each value of β = 1/t
by the relation (1.12), which requires the knowledge of the quasi-particle ex-
citation Ek in (1.3).

Firstly, the gap equation (1.4) and (1.11) can be combined into a system
with the unknowns G and λ. With the knowledge of ∆0 (pairing gap at very
low temperature) from the binding energy of the isotope and its neighbors,
which can be obtained from some standard reference, G and λ0 can be ob-
tained. The obtained G is used again in these two equations to get ∆ and λ
for each β = 1/t value. This calculation is carried out for protons and neu-
trons separately since entropy and energy are additive quantities, and so we
will obtain λp, ∆p for protons, λn, ∆n for neutrons. We can see in Figure 1.1,
for 207Bi case, how ∆p depends on the temperature t, and the critical tem-
perature for each nucleon type, where the pairing effects disappear, can be
noticed.

With the knowledge of ∆ and λ, Ek can be obtained, and entropy S =
Sp + Sn, where Sn is the entropy of the neutrons and Sp is the entropy of
the protons, can be evaluated along with the Hessian matrix of the entropy,
which finally results in the level density ρ, shown in the second and the third
graphs in Figure 1.1.

Lastly, the excitation energy U = Ek −E0 is obtained by subtracting the
quasi-particle energy from the quasi-particle energy obtained using ∆0 and
λ0.
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Figure 1.1: The neutron and proton pairing gaps ∆p and ∆n, entropy S,
level density ρ, and the total excitation energy U depending on the statistical
temperature t, obtained by the calculation method outlined above for 207Bi
isotope.

1.4 Parametrization

The Fermi Gas expression[6]:

ρFg =

√
π

12a1/4U5/4
e2

√
aU , (1.13)

7



is useful in the way it relates the level density to the excitation energy di-
rectly. The known ρ and U from the level density calculations above are used
to obtain a(U).

The obtained a(U) is fitted onto the phenomenological expression[6]:

a(A,U) = ã(A)

[
1 +

1− e−γU

U
δEshell

]
, (1.14)

Where γ and ã are the damping parameter and saturation level density
(reached after some U value), and δEshell is the shell correction. Such calcu-
lations of level density parameter are shown for 203Bi in Figure 1.2.

Figure 1.2: Dependence of level density parameter a on the excitation energy
obtained for 203Bi from the calculation methods outlined above.
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Chapter 2

TALYS cross-section
calculations

The code for simulating nuclear reactions, TALYS[5], is used with the level
densities calculated above to obtain the cross-sections needed for evaluat-
ing the relative yields of 209Bi(γ, xn). To do so, the three parameters ã, γ,
and δEshell, from the above calculations for 209Bi and products 200−208Bi, are
given as the keywords in the TALYS input for the generalized superfluid
model grand partition function level density fitted onto Fermi Gas expres-
sion (ld3 model in TALYS). The results of such calculations are shown in
Figure 2.1.

Using ”asys y” keyword in TALYS is important for these calculations
since TALYS default keyword is set to be ”asys n” which means that TALYS
fits the parameters ã, γ, and δEshell such that they fit with some experimental
database. Another thing to consider is the use of ”ejectiles n” keyword. The
keyword reduces the event space, excluding for example the proton emission,
thus increasing the overall probability calculations for all neutron emissions.
The keyword is used to decrease the computation time, as many effects can
occur after 209Bi is irradiated by bremsstrahlung radiation of 100 MeV.
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Figure 2.1: The cross-sections obtained via TALYS code used with the level
density information outlined above.

10



Chapter 3

Comparison with the
experiment

3.1 Experimental relative yields

The experimental data of saturation activities [2], where the products of
209Bi(γ, xn) reactions were obtained by irradiating the bismuth sample with
bremsstrahlung of 60, 80 and 100 MeV is used for comparison.

Continuously irradiating bismuth causes saturation in activity. The half-
life of the products of photonuclear reactions is long enough such that the
irradiated sample can be taken to HPGe detectors to obtain the gamma spec-
trum. Identifying products with their specific gamma lines and measuring the
counts can provide us with the experimental yields of the 209Bi(γ, xn) reac-
tion. These yields are calculated relative to 206Bi and are given in (Table 3.1).

These relative yields of the products of 209Bi(γ, xn) reactions are to be
compared with the ones theoretically calculated using the level density calcu-
lations combined with the TALYS cross-section and photon flux simulations.

Since the calculations are relative to one isotope, the comparison with the
theoretically obtained values will not suffer from dependence on exact units
of photon flux and cross-sections.
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isotope 60 MeV 80 MeV 100 MeV
207 - 7.3 6.7
206 1.0 1.0 1.0
205 0.41 0.45 0.45
204 0.163 0.173 0.177
203 0.073 0.087 0.097
202 0.02 0.038 0.046
201 0.0055 0.013 0.02
200 - 0.0025 0.0059

Table 3.1: Experimental relative saturation activities (relative yields).

3.2 Theoretical relative yields

The saturation activity:

R =

∫ Es

Et

Φ(E)σ(E)dE, (3.1)

can be calculated knowing the TALYS cross-section σ(E), obtained with the
use of our level density calculations, and the photon flux ϕ(E), modeled in
GEANT4. The integral boundaries are the threshold energy for the reaction
to occur Et and the maximum energy of the photon flux Es. The flux and
cross-section are taken with the same binning of 1 [MeV]. The photon flux
spectrum was generated using GEANT4 code for bremsstrahlung of 60, 80,
and 100 MeV, as these were the energies used in the experiment, and for the
geometry matching the one in the experiment. The flux spectrum can be
seen in Figure 3.1.

Integrating (3.1) for each of the cross-sections in Figure 2.1, the satu-
ration activities for the corresponding isotopes are obtained and are stated
relative to 206Bi saturation activity in Table 3.2. To make further compar-
isons, another theoretical calculation [2] of relative yields without the use of
TALYS is considered.
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Figure 3.1: Photon flux from GEANT4 simulations of the experiment.

isotope 60 MeV 80 MeV 100 MeV
207 5.53 5.19 5.05
206 1.0 1.0 1.0
205 0.44 0.48 0.49
204 0.15 0.21 0.23
203 0.02 0.11 0.13
202 0.00 0.04 0.06
201 0.00 0.01 0.03
200 0.00 0.0 0.01

Table 3.2: Relative saturation activities (relative yields) calculated using
cross-sections from TALYS and photon flux from GEANT4.

3.3 Comparison and conclusions

Finally, the relative yields obtained from the outlined TALYS calculations,
from the experiments, and the independent theoretical calculations are la-
beled ’Calculations with TALYS’, ’Experimental’, and ’Theoretical calcula-
tions’ in Figure 3.2, respectively.
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Figure 3.2: Comparison of relative yields obtained from the outlined calcu-
lations with TALYS, experimental results, and independent theoretical cal-
culations.
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Conclusions

From the results in Figure 3.2, it is noticeable that the experiments don’t
match the theory at 60 MeV bremsstrahlung energy when more than six
neutrons are emitted. The energy of 60 MeV is not sufficient to abundantly
produce isotopes with the mass number 202 and less since the separation en-
ergy per nucleon is around 7.8 MeV while taking into account that neutrons
produced to take on the Maxwellian distribution of energy.

This might indicate the need for further examination of the spectra, such
that the source of the experimental yields presented in Figure 3.2 for more
than six neutrons emitted are better established.

The gamma spectrum used for the experimental yields had also a no-
ticeable amount of lead, raising the possibility of proton emission effects on
calculations. This is to be investigated further by implementing the combi-
natorial method of counting up the states and using it for the pre-equilibrium
reactions.
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