Introduction to Quantum ComputingReportQubit code / measurements

Maria Dima University of Bucharest – Romania

Contents

Quantum mechanics; TRANSMON qubits; read/set

2 ROOT package

- 3 HYBRILIT experience; SU2 package
- 4 Qubit measurements
- 5 Quant-gates; Groover algorithm

Contents

Quantum mechanics; TRANSMON qubits; read/set

2 ROOT package

- 3 HYBRILIT experience; SU2 package
- 4 Qubit measurements
- 5 Quant-gates; Groover algorithm

particles have wavelength : $\lambda = h / p$

... and a wavefunction : $|\psi\rangle$ = Hilbert-space vec

Superposition of states

overlap of state ϕ onto ψ : prob% = $|\langle \phi | \psi \rangle|^2$

- of uncertain momentum and location
- Heisenberg uncertainty

Quantisation

Schrödinger equation

$$i\hbarrac{\partial}{\partial t}\psi(x,t)=-rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}\psi(x,t)+V(x)\psi(x,t)$$

Spin

Stern-Gerlach experiment

- electron has intrinsic spin
- that is quantised \uparrow or \downarrow

$$H = -\vec{\mu} \cdot \vec{\mathbf{B}} = -\mu \vec{\sigma} \cdot \vec{\mathbf{B}}$$

$$ec{\sigma} imes ec{\sigma} \ = \ 2 i \, ec{\sigma}$$

-
$$| \leftarrow \rangle + | \rightarrow \rangle = \sqrt{2} | \uparrow \rangle$$

pure state in one base is superposition in another

w/ MLIT Department

Transmon qubits

JINR University Centre

w/ MLIT Department

rtment and DFCTI Department IFIN-HH, Romania

25.March.2022

Transmon qubits

Transmon qubit

 $E_{_{J}}/E_{_{C}}=30.00$

0

0.25

0.5

Ng

- anharmonicity engineered
- immune to V_g variations
- phase-state qubit

JINR University Centre

0.75

w/ MLIT Department

and DFCTI Department IFIN-HH, Romania

25.March.2022

Interaction w/ qubits

Microwave cavity

- fundamental mode

 $H_{int} = -d \cdot E_r$

- interaction w/ qubit dipole

$$= -d_x \mathcal{E}_0 \left(\hat{a} + \hat{a}^\dagger\right) (\sigma_+ + \sigma_-)$$

Qubit readout

Readout pulse

- homodyne measurement
- dressed-state frequency

Manipulation pulses

Contents

Quantum mechanics; TRANSMON qubits; read/set

2 ROOT package

- 3 HYBRILIT experience; SU2 package
- 4 Qubit measurements
- 5 Quant-gates; Groover algorithm

ROOT package

- I downloaded from CERN the ROOT-5.34 (Windows)

- I learned how to write my own macro and do fits

Contents

2) ROOT package

- 3 HYBRILIT experience; SU2 package
- 4 Qubit measurements
- 5 Quant-gates; Groover algorithm

SU2 package

- model dispersion of a square wave on a transmission line:

$$-\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \partial_x \equiv \begin{pmatrix} 0 & L\\ C & 0 \end{pmatrix} \partial_t + \begin{pmatrix} 0 & R\\ G & 0 \end{pmatrix} \Big|_{\begin{pmatrix} u\\ i \end{pmatrix}}$$

 $Z_0 = Y_0^{-1} = \sqrt{L/C}$, line characteristic impedance

$$\lambda_d^{-1} = (RY_0 - GZ_0)/2$$
, dispersion length

 $\lambda_a^{-1} = (RY_0 + GZ_0)/2$, attenuation length

 $c = 1/\sqrt{LC}$, signal propagation speed

- equation:
$$\partial_x + \sigma_1(\partial_{ct} + \lambda_a^{-1}) + j\sigma_2\lambda_d^{-1} = 0_{|\psi}$$

 $\psi = e^{-ct/\lambda_a}\phi$
 $\partial_x + \sigma_1\partial_{ct} + j\sigma_2\lambda_d^{-1} = 0_{|\phi}$

- solution:

SU2 package

- I used the SU2 package to model the propagator:

25.March.2022

SU2 package

- I obtained a very nice solution of square wave dispersion:

w/ MLIT Department

ment and DFCTI Department IFIN-HH, Romania

Contents

2 ROOT package

- 3 HYBRILIT experience; SU2 package
 - Qubit measurements
- 5 Quant-gates; Groover algorithm

4

Qubit resonance frequency

25.March.2022

T_1 determination

JINR University Centre

w/ MLIT Department

and DFCTI Department IFIN-HH, Romania

25.March.2022

Qubits on the Bloch sphere

 $|\psi\rangle = \psi_{\uparrow}|\uparrow\rangle + \psi_{\downarrow}|\downarrow\rangle$

JINR University Centre

Bloch sphere

- 2 level system always equivalent to spin
- arbitrary wave-vector can be written as:

$$=e^{i\phi_{\uparrow}}\left(|\psi_{\uparrow}|\cdot|\uparrow\rangle+e^{i(\phi_{\downarrow}-\phi_{\uparrow})}|\psi_{\downarrow}|\cdot|\downarrow\rangle\right)$$

$$=e^{i\phi_{\uparrow}}\sqrt{|\psi_{\uparrow}|^{2}+|\psi_{\downarrow}|^{2}}\left(\frac{|\psi_{\uparrow}|}{\sqrt{|\psi_{\uparrow}|^{2}+|\psi_{\downarrow}|^{2}}}\mid\uparrow\rangle+\frac{|\psi_{\downarrow}|}{\sqrt{|\psi_{\uparrow}|^{2}+|\psi_{\downarrow}|^{2}}}e^{i(\phi_{\downarrow}-\phi_{\uparrow})^{2}}\right)$$

$$=e^{i\phi_{\uparrow}}\sqrt{|\psi_{\uparrow}|^{2}+|\psi_{\downarrow}|^{2}}\left(\cos\frac{\theta}{2}\mid\uparrow\rangle+\sin\frac{\theta}{2}\,e^{i(\phi_{\downarrow}-\phi_{\uparrow})}\mid\downarrow\rangle\right)$$

Bloch sphere

 $\frac{|0
angle+i|1}{\sqrt{2}}$

 $|\psi\rangle$

 $z |0\rangle$

 $|1\rangle$

х

represented on the Bloch sphere

Quantum logical gates

GATE	CIRCUIT	MATRIX	TRUTH	BLOCH
	REPRESENTATION	REPRESENTATION	TABLE	SPHERE
H gate: rotates the qubit state by π radians (180°) about an axis diagonal in the x-z plane. This is equivalent to an X-gate followed by a $\frac{\pi}{2}$ rotation about the y-axis.	—-[H]	$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$\frac{ \text{Input} }{ 0\rangle} \frac{ 0\rangle + 1\rangle}{\sqrt{2}}$ $\frac{ 1\rangle}{\sqrt{2}} \frac{ 0\rangle - 1\rangle}{\sqrt{2}}$	Z 180° Salary X

$$2\mathbf{U}_{3}(\theta,\phi,\lambda) = \cos\frac{\theta}{2} \left[(1+e^{i(\lambda+\phi)}) \cdot \mathbf{1} + (1-e^{i(\lambda+\phi)}) \cdot \sigma_{z} \right] + \sin\frac{\theta}{2} \left[e^{-i\lambda}\sigma_{+} + e^{i\phi}\sigma_{-} \right]$$

JINR

controlled-U gates if $q[0] = |1\rangle$ operation U is performed on q[1]else ID

Calculation of results

Entanglement

- 2 qubit states: $|\uparrow\uparrow\rangle$, $|\uparrow\downarrow\rangle$, $|\downarrow\uparrow\rangle$ and $|\downarrow\downarrow\rangle$

- entangled states: $|\psi\rangle = \frac{|\downarrow,\uparrow\rangle \pm |\uparrow,\downarrow\rangle}{\sqrt{2!}}$

Circuit composer

Circuit editor

OPENQASM 2.0; 1 2 include "qelib1.inc"; 3 4 qreg q[5]; creg c[2]; 5 6 h q[0]; 7 8 id q[1]; 9 ch q[0],q[1]; measure $q[0] \rightarrow c[0];$ 10 measure $q[1] \rightarrow c[1];$ 11

Create account

Oracle

Detect the <a>[1,1] state

 $NOT (|0\rangle - |1\rangle) = |1\rangle - |0\rangle = - (|0\rangle - |1\rangle)$ $ID (|0\rangle - |1\rangle) = |0\rangle - |1\rangle = + (|0\rangle - |1\rangle)$

JINR

Signals with a " - " the target state

- **IBM Q-Experience**
- Circuit composer

Implementation & results

QASM-2 Circuit editor

1	OPENQASM 2.0;	13	h q[2];
2	<pre>include "qelib1.inc";</pre>	14	x q[1];
3		15	x q[2];
4	<pre>qreg q[5];</pre>	16	h q[1];
5	<pre>creg c[2];</pre>	17	cx q[2],q[1];
6		18	h q[1];
7	x q[0];	19	id q[2];
8	h q[1];	20	x q[1];
9	h q[2];	21	x q[2];
10	h q[0];	22	h q[1];
11	ccx q[1],q[2],q[0];	23	h q[2];
12	h q[1];	24	measure $q[1] \rightarrow c[1];$
		25	measure $q[2] \rightarrow c[0]$:

Implementation & results

JINR

Personal opinions

- I learned about the quantum physics fundamentals of qubits and did some interesting hands-on determinations (f_0 , T_1 , T_2) of the ibmq_armonk qubit system on IBM's Q-Experience site

- We had access to the supercomputing cluster HybriLIT of JINR, which was very cool – for an SU2 simulation package in C++

- I learned to use the ROOT package from CERN to process and do fits on data

- We learned how to process multiple-entry quantum gate output and walked through the Grover quantum search algorithm – and after implemented and ran it on IBM's Q-Experience site

- The professors were very good and friendly, I highly recommend this student training programme !

