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Abstract

In this study we investigate the phase dynamics of a single superconductor-
insulator-superconductor (SIS) junction and a stack of SIS junctions. Some
interesting features appear for a stack of SIS junctions where a parametric
resonance region is developed and the charge on the superconducting layers
grows exponentially leading to the formation of a longitudinal plasma wave
(LPW) along the c-axis of our stack. We also study the effect of external
radiation on the current voltage characteristics (CVC) for both single and
stack systems which shows a development of constant voltage steps (Shapiro
steps).



Chapter 1

Single SIS Josephson junction

Prior to 1962 it was thought that for two weakly coupled superconductors,
where the coupling can be through a thin insulating barrier (SIS junction),
a normal metal barrier (SNS), or a ferromagnetic material (SFS), etc.., the
probability of a Cooper pair tunneling across the barrier is insignificantly
small. Thus at T=0 and for applied voltages less than twice the energy gap
where no quasiparticles are present no current should be observed. In 1962
it was predicted by Brian D. Josephson that this indeed was not true and
the Cooper pairs can tunnel through the barrier with a probability equal to
that of a single quasiparticle and this effect was named after him.
Our study here concerns the Josephson effect for SIS junctions.

1.1 The Josephson equations

The main theoretical tools describing the Josephson effect are the two Joseph-
son equations:
The current-phase relation

Js(φ) = Jc sinφ (1.1)

where φ is the phase difference φ = θ2 − θ1 , θ1 and θ2 are the phases
characterizing the macroscopic wave functions of the two superconductors
ψ1 =

√
n∗1
s e

iθ1 , ψ2 =
√
n∗2
s e

iθ2 , n∗1
s , n

∗2
s being the Cooper pair densities of

the two superconductors.
Js is the supercurrent density and Jc is a critical current density beyond
which the current flowing cannot all flow as a supercurrent only, the excess
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current has to flow through a resistive channel. This relation and the ex-
act shape of the critical current density Jc can be derived from solving the
Schrödinger equation for this tunneling problem, using wave matching in the
three regions of superconductor 1, insulator, superconductor 2 and assuming
a homogeneous barrier and homogeneous supercurrent flow. It was found
that for a typical barrier of thickness of a few nm the critical current density
decreases exponentially with increasing the barrier’s thickness.
Here we deal with short Josephson junctions where the junction area is small
enough so that the supercurrent density can be assumed constant and the
current-phase relation takes the form

Is(φ) = Ic sinφ (1.2)

The second Josephson equation is the voltage-phase relation relating the
phase difference across the junction and the potential difference developed.

∂φ

∂t
=

2π

Φo

V (1.3)

where Φo is the flux quantum given by Φo = h/2e.

1.2 AC and DC Josephson effects

Two very important effects occurring are:
The DC Josephson effect, where without the application of any external
current or voltage, a DC supercurrent flows due to the tunneling of Cooper
pairs, where φ is a constant since the supercurrent flowing is less than the
critical current and no external biasing is present so no voltage is developed
across the junction and thus the phase difference is a constant that doesn’t
depend on time.
The other is the AC Josephson effect, where for example on applying a DC
voltage, an oscillating supercurrent is produced. Integrating Eq.(1.3) since
V is constant yields

φ(t) = φo +
2π

Φo

V t (1.4)

Thus the Josephson supercurrent is time dependent Is(t) = Ic sinφ(t) oscil-
lating with the Josephson frequency

ωJ =
2π

Φo

V (1.5)
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1.3 The superconducting state and the volt-

age state

So far we have been discussing cases where Is does not exceed Ic, this state
is referred to as the superconducting state or the zero voltage state where all
the current flows as supercurrent and no voltage drop is developed across the
junction. If the current exceeds such critical current, the excess flows through
a resistive channel, the so called normal current channel creating a potential
difference V and a time evolving phase difference. If the potential difference
evolves in time as well, the excess current can also flow as a displacement
current through a capacitive channel. This state is the so called voltage state.
If the junction is biased using a DC current source whose value exceeds Ic,
the rest flows through the resistive and capacitive channels and the total
current is of course fixed by the fixed biasing current.

1.4 The model

According to our previous discussion an equivalent circuit [1] of the Josephson
junction in the voltage state including all current contributions is of the form,

Figure 1.1: The equivalent circuit for a Josephson junction in the voltage
state [1].

I = Is + IN + ID + IF (1.6)

where IF is a fluctuating noise current that we shall ignore in our treatment
of a single junction. ID is the displacement current given by ID = C dV

dt
, IN
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is the quasiparticle current given by GN(V )V , where GN(V ) is the normal
conductance which we will take as a constant taking the resistively and capac-
itively shunted junction (RCSJ) Model approximation, GN(V ) = GN = 1

RN
,

and Is is the Josephson supercurrent Is = Ic sinφ.
This combined with the Josephson voltage-phase relation Eq.(1.3) gives(

h̄

2e

)
C
d2φ

dt2
+

(
h̄

2e

)
1

R

dφ

dt
+ Ic[sinφ−

I

Ic
] = 0 (1.7)

This is a second order nonlinear differential equation which we solve numer-
ically. We first need to rewrite it in a dimensionless form, this can be done
by using the normalized time τ = tωp, where ωp =

√
2eIc/h̄C is the so called

plasma frequency which is the system’s oscillation frequency with neglecting
the first derivative of φ with respect to time, zero biasing current and for
small φ such that sinφ ' φ.
Substituting we get the dimensionless equation

d2φ

dτ 2
+ β

dφ

dτ
+ sinφ− i = 0, (1.8)

where i is the biasing current I normalized to Ic and β is the so called dis-
sipation parameter which is related to the Stewart-McCumber parameter
βc = (2e/̄h) IcR

2
NC by β = 1

/√
βc.

We call junctions with (βc � 1), (β � 1) or equivalently small capaci-
tance and/or resistance, overdamped junctions. While for junctions with
(βc � 1) or (β � 1), or equivalently large capacitance and/or resistance,
underdamped junctions.
The naming (overdamped/ underdamped) stems from a mechanical analogy
to a system of a particle of mass M in a potential U with damping η whose
equation of motion is given by

M
d2x

dt2
+ η

dx

dt
+ ~∇U = 0. (1.9)

Multiplying Eq.(1.7) by h̄
2e

we get the equivalences

M =

(
h̄

2e

)2

C, η =

(
h̄

2e

)2
1

R
(1.10)

thus for small R and/or C it’s overdamped, while for large R and/or C it’s
underdamped.
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Equation (1.8) is the dimensionless nonlinear differential equation describ-
ing our system along with the Josephson voltage-phase relation Eq.(1.3). To
obtain a CVC we solve Eq.(1.8) using a fourth order Runge-Kutta method.
In our calculations, for each step of current ∆i the voltage time dependence
is calculated with a step of time ∆τ , then the average voltage over a time
domain we choose is calculated and our CVC curve is developed between the
time averaged voltage at each current point determined by ∆i.

1.5 Overdamped and underdamped junctions

Here we study the CVC corresponding to a DC current source biasing of the
Josephson junction. The current step was taken to be ∆i = 0.0005, the step
of time ∆τ = 0.05 and the time domain for averaging the voltage starts from
80 to 1000 for the overdamped case, and from 80 to 250 for the underdamped
case.
For strong damping (βc � 1), (β � 1) the CVC curve shown below con-
sists of two regions.

Figure 1.2: CVC for an overdamped junction with dissipation parameters
β = 2 and β = 4.
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The first one for I < Ic i.e. i < 1, the Josephson junction is in the zero volt-
age state since all the current should be flowing as a Josephson supercurrent.
For I > Ic i.e. i > 1 and for β � 1 Eq.(1.7) is solved to give the time
averaged voltage

< V (t) >= IcR

√(
I

Ic

)2

− 1, (1.11)

giving the behaviour shown above. As β is increased it can be seen that the
curve shifts downward, this is directly shown through the R dependence in
Eq.(1.11).

For weak damping, unlike the strong damping, the behavior will depend
on the direction of current, as shown in the figure below this forms a hys-
teresis region. This hysteresis region can be understood from the mechanical

Figure 1.3: CVC for an underdamped junction with dissipation parameters
β = 0.1 and β = 0.4.

analogue point of view that in the case of weak damping the particle would
have a relatively large KE and so it returns to the zero voltage state at a
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lower value of current than Ic, this value is called the return current and it
tends to zero when β → 0. The hysteresis region is larger ,of course, for
lower dissipation parameter. It can also be seen that the behavior here is
an ohmic one, this is because for an underdamped junction solving Eq.(1.8)
for (βc � 1) or (β � 1) yields an almost constant voltage resulting in a si-
nusoidal behavior for the Josephson supercurrent with about zero mean and
thus almost all the current is carried by the resistive channel.

1.6 The effect of external radiation

The effect of external radiation is accounted for by adding the extra term
A sinωτ to the biasing current i, where ω is the frequency of the external
radiation and A is its amplitude normalized to the critical current Ic. The
figure shown is for the overdamped case with β = 4, A = 1, ω = 0.5 and
numerical parameters ∆i = 0.0005, ∆τ = 0.05 and a time domain from about
1005 to about 12566. We observe constant voltage steps in the CVC curve.

Figure 1.4: CVC for an overdamped junction with dissipation parameter
β = 4, external radiation of amplitude A = 1 and frequency ω = 0.5
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These steps are the so called Shapiro steps. The condition for the appearance
of such steps is when the normalized time averaged voltage is equal to the
applied frequency ,normalized to the plasma frequency, or integral multiples
of it i.e.

Vn = nω, n = 1, 2, 3, .. (1.12)

Here indeed we observe a step at V1 = 0.5 and another at V2 = 2ω = 1.
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Chapter 2

Stack of Josephson junctions
(HTSCs)

We now deal with a stack of N SIS Josephson junctions,i.e. N+1 supercon-
ducting layers, instead of just a single junction. Some interesting features
are developed. It can be seen from CVC curves that not all the junctions
transition into the resistive state together, the transition is discrete. The
CVC is characterized by a fundamental parametric resonance (fPR) where
an exponential charge growth over each layer is developed and a longitudinal
plasma wave is produced along the c-axis of the material whose frequency is
half of that of the Josephson frequency at the fPR [2]. Another interesting
feature also occurs on irradiating the stack with a frequency equal to that of
the Josephson frequency, the so called double resonance condition, this leads
to the appearance of constant voltage steps (Shapiro steps) at the fPR.

2.1 Intrinsic Josephson junctions

The layering structure of high temperature superconductors (HTSCs) like
for example cuprates provides an example of a stack of Josephson junctions,
these are the so called intrinsic Josephson junctions. The layering scheme
of such HTSCs is essentially the same, comprised of a stack of conduction
layers held together by binding layers as shown in the two figuers below [3] for
different materials. The layering along the c-axis of the unit cell is in the form
of groups of copper oxide layers separated by layers of calcium or yttrium
for example, these groups of CuO2 are responsible for the superconducting
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properties of the material. Between these CuO2 groups are binding layers
usually made of metal oxides.

(a) (b)

Figure 2.1 [3] (a): Layering scheme for various cuprates where the large boxes
constitute the unit cell and the small ones the conduction layers. (b): The
general layering scheme.

2.2 CCJJ+DC model

Here we use the capacitively coupled Josephson junctions model with dif-
fusion current (CCJJ+DC) [4] to study the CVC of our system of a stack
of intrinsic Josephson junctions. Since the typical thickness of the super-
conducting layers is comparable to the Debye charge screening length this
means that the electric charge isn’t totally screened between layers leading
to a capacitive coupling between them. Here we only use nearest neighbor
coupling and the dimensionless Josephson equations are modified to be:

∂φ

∂τ
= Vl − α(Vl+1 + Vl−1 − 2Vl), (2.1)
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where the subscript l runs from 1 to N + 1 specifying the number of the
superconducting layer and α is the coupling parameter. The total current
normalized to Ic takes the form

i = ils + ilqp + ilD + ildiff + iF , (2.2)

where ils = sinφl is the Josephson supercurrent, ilqp = βVl is the quasiparticle

current, ilqp = dVl
dτ

is the displacement current and an additional term stem-
ming from Eq.(2.1) is the diffusion current ildiff = −αβ(Vl+1 + Vl−1 − 2Vl)
and thus

∂Vl
∂τ

= i− sinφl − β
∂φ

∂τ
+ A sinωτ + iF (2.3)

where the additional term A sinωτ accounts for the effect of the external
radiation as before.
Here we impose periodic boundary conditions so that VN+1 = V1 and use the
same numerical method we used for a single SIS junction (see last paragraph
in section 1.4) to solve Eqs.(2.1) and (2.3) for each superconducting layer.

2.3 Current voltage characteristics

(a) (b)

Figure 2.2 (a): CVC for different values of N. (b): Zooming in on the area
where the junctions switch one by one to the zero voltage state.
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We first study the effect of changing the number of junctions N on the
CVC for the underdamped case. We take the current step ∆i = 0.005 and
for the hysteresis region within i1 = 0.45 and i2 = 0.65 ∆i = 0.0001, a step
of time of ∆τ = 0.05 and a dissipation parameter of β = 0.2.
We notice that in the hysteresis region the transition to the zero voltage
state happens gradually as each junction switches from the voltage state to
the zero voltage state one by one till they all reside in the zero voltage state
below a value of current we call the return current. We also notice that as
the number of junctions increase the resistive branch is shifted higher and
its slope increases.

2.4 Longitudinal plasma waves

(a) (b)

Figure 2.3 (a): CVC for ω = 0 and ω = 2, A = 0.1. (b): Exponential
charge growth at the fPR, inset shows charge on two neighboring layers
being opposite to each other.

As we’ve mentioned earlier our system is characterized by a fPR where
the electric charge on the superconducting layers grows exponentially and a
longitudinal plasma wave whose frequency is half the Josephson oscillation
frequency at that point is developed along the c-axis. Above are our CVC
curves where the fPR is labeled and characterized by a breakpoint voltage
Vbp ' 11.51 for ω = 0 thus using Eq.(1.5) and for a number of junctions
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of N = 10 the Josephson oscillation frequency normalized to the plasma
frequency takes the value ωJ = Vbp/N ' 1.151. It should be that Vbp for
ω = 2 and A = 0.1 is at a slightly lower value (visible when zoomed in).
The model parameters we took are β = 0.2, α = 0.05 and the numerical
parameters ∆i = 0.005 and within i1 = 0.2 and i2 = 0.5 ∆i = 0.0001. The
time domain for voltage averaging for ω = 0 is from τ1 = 50 to τ2 = 1000
and for ω = 2 from τ1 ' 157 to τ2 ' 3141.
Figure 2.3 (b) shows the exponential charge growth calculated according to
the following normalized relation which directly follows from Gauss’ law

Ql = α(Vl+1 − Vl). (2.4)

A longitudinal plasma wave (LPW) appears in the fPR along the c-axis of
the stack where its wavelength is affected by the amplitude of the incident
radiation as shown below. If we take the distance between two successive
layers as d, Figure 2.4 shows a LPW of wavelength 2d for A = 0, 10d for
A = 0.15 and 5d for A = 0.23.

(a) (b)

(c)

Figure 2.4 (a): LPW for ω = 0, (b) ω = 2 and A = 0.15 and (c) ω = 2 and
A = 0.23.
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2.5 Double resonance

Here we observe the formation of shapiro steps within the fPR when the
double resonance condition is reached, i.e. in addition to the fPR where
ωJ = 2ωLPW , the frequency of the incident radiation equals the Josephson
oscillation frequency as well i.e.

ω = ωJ = 2ωLPW . (2.5)

Since ωJ was found to be ' 1.151 for ω = 0, Shapiro steps do not appear
at lower frequencies, while for slightly higher frequencies they do appear as
shown in the figures below.

(a) (b)

Figure 2.5:(a) CVC for various values of ω and at A = 0.005, β = 0.2 and
α = 0.05., (b) A zoomed in fPR region showing the Shapiro steps.

2.6 Conclusion

In this study we were able to reproduce the data in [2] for a stack of SIS
Josephson junctions, where we showed the development of a parametric res-
onance region where electric charge is produced on the superconducting lay-
ers and a LPW is developed. We also investigated the effect of the external
radiation’s amplitude on the wavelength of the LPW and observed the de-
velopment of constant voltage steps (Shapiro steps) within the fPR region
when the double resonance condition is satisfied, i.e. when the frequency of
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incident radiation is equal to that of the Josephson oscillation frequency at
the fPR.
We also studied the phase dynamics of a single SIS junction and studied
the effect of external radiation on the CVC for the overdamped case where
Shapiro steps appeared at normalized voltages which are integral multiples
of the incident radiation’s frequency normalized to the plasma frequency.
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