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Coexistence of superconductivity and ferromagnetism at  low-

dimensional heterostructures 

 

Abstract 

In this project, polarized neutron reflectometry is used to investigate 

ferromagnetic and antiferromagnetic heterostructures. The proposed heterostructures 

are Al2O3/Cr/ [Fe/Cr]x12 /Gd/Cr and Al2O3/Nb /[Fe /Nb]*12/Nb. Neutron 

reflectivity is calculated for both theoretical and experimental data.  

Introduction 

Artificial periodic and non-periodic structures have gotten a lot of interest 

recently[1-12]. The coexistence of superconductivity, ferromagnetism, and 

antiferromagnetism (S, F, and AF) systems in uniform materials is very sensitive and 

needs special conditions due to the paramagnetic effect. The paramagnetic effect is the 

suppression of S because of the exchange field in F. The concentrated magnetic field 

lines of F are expelled with S as a result of the Meissner effect [13-15]. When the 

exchange field of F causes Zeeman energy with a higher value than the coupling energy 

between cooper pairs, S is destroyed. Besides, the exchange fields re-align the spin 

cooper pairs to be parallel to each other. For S/F heterostructures at certain conditions, 

proximity and magnetic proximity effects appear at each S/F interface due to the 

mutual interaction between them [16, 17]. 

Superconducting spintronics is an attractive field that manipulates the spin 

degrees of freedom in condensed-matter systems [18]. The term "spin" refers to the 

single electron spin or the average spin of a group of electrons, as represented by 

magnetization. The spin can be controlled by either its phase and population or by 

manipulating the spin of one or more spin systems [19]. Without inversion symmetry, 

the spin-orbit interplay in ferromagnetic layers provides a probability for a linear 

coupling between the magnetic moment and the supercurrent (𝐼𝑠) in Josephson 

junctions (JJs) of S/F/S [20].  In 1962, Brian Josephson discovered the Josephson effect 
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[21]. He predicted that 𝐼𝑠 can be existed between two superconductor layers separated 

by a thin layer of insulator. In the second year, Anderson and Rowell stationary 

observed Josephson effect experimentally for the first time [22]. The discovery of the 

JJ has contributed to the development of different types of sensors for detecting very 

weak magnetic fields and electromagnetic radiation [23]. 

As clear in Fig.1, Khaydukov et al. [12] investigated experimental S/F 

superlattices terminated by a relatively thick Nb layer. A Standard four-point contact 

method was used to measure the resistivity. The residual resistivity ratio of the 

prepared samples under these conditions is very high (15–20). The sample produced a 

depth modulated alloy of FeNb with an iron content ranging between 60% and 90%. 

The ferromagnetic characteristics of this alloy are poor. 

The proximity effect of this weak ferromagnetic behavior of FeNb alloy to 

the thick cap layer of Nb superconductor results in an intermediate phase defined by 

suppressed but still limited structural resistance in a temperature interval of roughly 1 

K below the thick Nb superconducting transition. The authors used X-ray diffraction 

(XRD) to evaluate the epitaxial growth quality and crystal structure. Guasco et al. [1] 

reported an experimental design composed of Nb/Co/Nb. Using PNR, they proposed 

direct, fast, non-destructive and sensitive measurements to detect the concentration of 

hydrogen in thin films.  

In 2014, Li et al. [24] studied the exchange-spring behavior of the LSCO/LSMO 

bilayer. They observed an unexpected behavior of magnetic switching that differs from 

that of traditional exchange-spring structures. In 2019, Koohfar et al. [25] 

experimentally designed  [LSCO(2)/LSMO(2)] heterostructure to evaluate the 

magnetic moment inside them. LSMO is magnetically soft F, but LSCO is 

magnetically hard F. In 2002, Lauter et al. [26] studied Fe/Cr multilayer structure and 

obtained that the Fe magnetization is twisted through the multilayer stack proving a 

stable noncollinear configuration. 
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Fig.1: Classical polarized neutron reflectometer setup. 

 

Materials and structure:  

            

Fig. 2: Schematic of PNR experiment setup and sample with deposited layers (A) 

Al2O3/Cr1/ [Fe/Cr2] x12 /Gd/Cr3, (B) Al2O3/Nb /[Fe /Nb] x 12/Nb. 

 

Polarized neutron reflectometry (PNR) is a very distinguished depth-resolved 
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technique that offers a one-of-a-kind way of "viewing" vector magnetization with 

incredibly high quality and spatial resolution. This technique depends on the interplay 

between the magnetic moments of both neutron and structure. Because neutrons have 

a magnetic moment, and their wavelengths can be adjusted to be comparable to 

interatomic distances, they undergo a simple dipole-dipole interaction in addition to 

the ordinary short-range nuclear interaction when they are scattered by a magnetic 

moment of an atom. Depending on whether the neutron's spin state changes ("flips"), 

the reflectivities of reflected neutron beams from a magnetic film can be distinguished. 

Due to the ability of PNR to measure the vector magnetization profile of magnetic 

films, periodic or non-periodic structures of ferromagnetic films separated by other 

materials can be examined to investigate their different magnetic behaviors. By 

studying the non-specular and specular spin-dependent scattering, the impact of 

thin layer thickness or magnetic domain orientation and size can be performed 

[27]. Because the wavelength of the thermal neutron is comparable to the London 

penetration depth and coherent length of ferromagnet and superconductor films, 

neutron beams are particularly well suited to investigating S/F systems. 

The proposed structures are Al2O3/Cr/ [Fe/Cr]x12 /Gd/Cr and Al2O3/Nb /[Fe 

/Nb]*12/Nb on sapphire substrates (Al2O3) with an area of 10 × 10 mm2. Molecular 

beam epitaxy is used to grow thin films of Nb. Besides, PNR will be carried out to 

study the vector magnetization of the structure. 
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Results and discussion: 

Firstly, the interaction between neutron beam and Al2O3/Cr1(100 Å) / 

[Fe(90 Å) /Cr2(11 Å)]x12 /Gd(50 Å) /Cr3(50 Å) structure will be studied. The 

grazing angle is 8.76 mrad and the magnetization Mz= 24 Oe. As clear in Fig. 3, 

the neutron reflectivity R++ and R- - record low reflectivity at low wavelengths. 

By increasing the wavelength of the incident neutrons, the reflectivity gradually 

increases until it reached the maximum reflectivity at λ of about 6 Å. By using the 

theoretical model, the simulated data has higher reflectivity. Due to the fabrication 

tolerance, we will fit the parameters within the range of ± 30 %.  

 

Fig. 3: Neutron reflectivities (A) R++, (B) R-- for Al2O3/Cr1(100 Å) / [Fe(90 Å) 

/Cr2(11 Å)]x12 /Gd(50 Å) /Cr3(50 Å) structure at a grazing angle of 8.76 mrad and 

external magnetic field of 24Oe. 

Now, we will study the fabrication tolerance of the thickness of Cr3 within 

the range of ± 30 % (from 35 Å to 65 Å). As clear in Fig. 5, the thickness of 35 Å 

is the closest one to the experimental data compared with the other values. So, we 

will complete other fitting processes with Cr3=35 Å. 
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Fig. 4: Neutron reflectivities (A) R++, (B) R-- for Al2O3/Cr1(100 Å) / [Fe(90 Å) /Cr2(11 

Å)]x12 /Gd(50 Å) /Cr3(50 Å) structure at a grazing angle of 8.76 mrad and external 

magnetic field of 24Oe for different values of Cr3 thickness. 

By studying the fabrication tolerance of the thickness of Gd within the 

range of ± 30 % (from 35 Å to 65 Å), a thickness of 65 Å seems to be better than 

other thicknesses, as clear in Fig. 5. 

 

Fig. 5: Neutron reflectivities (A) R++, (B) R-- for Al2O3/Cr1(100 Å) / [Fe(90 Å) /Cr2(11 

Å)]x12 /Gd(50 Å) /Cr3(50 Å) structure at a grazing angle of 8.76 mrad and external 

magnetic field of 24Oe for different values of Gd thickness. 
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After that, the thickness of Cr2 within the range of ± 30 % (from 7.7 Å to 

14.3 Å) will be studied. We found that the Cr2 thickness of 11 Å is relatively good, 

as clear in Fig. 6. For the Fe layer, the range of ± 30 % (from 63 Å to 117 Å) is 

studied as clear in Fig. 7. We will select the thickness of 103.5 Å.  

 

Fig. 6: Neutron reflectivities (A) R++, (B) R-- for Al2O3/Cr1(100 Å) / [Fe(90 Å) /Cr2(11 

Å)]x12 /Gd(50 Å) /Cr3(50 Å) structure at a grazing angle of 8.76 mrad and external 

magnetic field of 24Oe for different values of Cr2 thickness. 

 

Fig. 6: Neutron reflectivities (A) R++, (B) R-- for Al2O3/Cr1(100 Å) / [Fe(90 Å) /Cr2(11 

Å)]x12 /Gd(50 Å) /Cr3(50 Å) structure at a grazing angle of 8.76 mrad and external 
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magnetic field of 24Oe for different values of Fe thickness. 

 

Fig. 4: Neutron reflectivities (A) R++, (B) R-- for Al2O3/Cr/ [Fe/Cr]*12 /Gd/Cr 

structure at a grazing angle of 8.76 mrad and external magnetic field of 4 kOe. 

 

 

 

Fig. 5: Neutron reflectivities (A) R++, (B) R-- for Al2O3/Nb /[Fe /Nb]*12/Nb 

structure at a grazing angle of 9.25 mrad and external magnetic field of 24Oe. 
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Fig. 6: Neutron reflectivities (A) R++, (B) R-- for Al2O3/Nb /[Fe /Nb]*12/Nb 

structure at a grazing angle of 9.25 mrad and external magnetic field of 4 kOe. 
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Conclusion and future work 

In this report, we plotted the experimental data of two structures. Then, we fitted these 

structures theoretically.  Due to the small period of this interesting wave (6 weeks), we 

will complete the fitting process in the future. After that, we will discuss and explain 

the results.  
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