Radiation Protection and the Safety of the Radiation Sources

INTEREST-INTERNATIONAL REMOTE STUDENT TRAINING AT JINR WAVE 6

Participant: Muhammed Sami Allam Allam Supervisor: Said M.Shakour

TASK 1: RESOLUTION FOR BGO DETECTOR

$$
\mathrm{R}=\frac{\text { Sigma }}{\text { Mean }} * 2.35 * 100
$$

\checkmark The Sigma \& Mean are statistical parameters, so we should fit our data to get them.
\checkmark We follow the previous equation to get the Resolution.
\checkmark We plot the Resolution on Y-axis and the applied voltage on X-axis.

Voltage (V)	Mean	sigma	Resolution
1200	1.39119	0.628829	106.2219
1300	1.38702	0.281575	47.7067
1400	1.92403	0.294769	36.0029
1500	2.98400	0.465246	36.6397
1600	4.40174	0.655654	35.0040
1700	6.08761	0.836223	32.2807
1900	10.65120	1.281030	28.2637
2000	13.57300	1.646460	28.5065

Resolution for BGO detector
As we see, the more the applied voltage, the more the resolution. But should optimize the applied voltage in which we get the highest resolution without breaking the calibration.

At $1300 \mathrm{~V} \rightarrow \mathrm{R}=47.7 \%$

At $2000 \vee \rightarrow R=28.5 \%$

TASK 2.1: ENERGY CALIBRATION FOR BGO DETECTOR

\checkmark Again, we need the Mean values for these three peaks
\checkmark We plot a graph between the Mean on Y-axis and the Energy on the x-axis
\(\left.$$
\begin{array}{|c|c|}\hline \text { Energy } \\
(\mathrm{MeV})\end{array}
$$ \quad \begin{array}{c}PMT

(A.U)\end{array}\right]\)| 6.45607 |
| :--- |
| 0.662 |

Energy Calibration curve for BGO detector

TASK 2.2: DETERMINING ENERGY OF UNKNOWN SOURCE

The equation of the straight line in the previous graph is
$y=9.71 x+0.0696$
\checkmark The x indicates the energy
\checkmark The y indicates the PMT signal (Mean)
So, we can determine the energy of an unknown source using this equation by knowing the Mean value only

$$
\text { Energy }=\frac{(\text { Mean }-0.0696)}{9.71}
$$

Mean	Energy (MeV)	Energy2 (KeV)	
0.28968	0.02254	22.54	Sm-151
0.38146	0.03194	31.94	Mg-28
0.47737	0.04176	41.76	1-129 or Rh-103m
0.58249	0.05252	52.52	Rh-104 m
1.03236	0.09859	98.59	Dy-165

TASK 3: RESOLUTION FOR NaI DETECTOR

Applied Voltage (v)	Mean	sigma	Resolution	$\mathrm{R}(\%)$
900	23.6267	0.701646	0.0698	6.98
1000	40.5992	1.054550	0.0610	6.10
1100	65.7567	1.589430	0.0568	5.68
1200	98.6401	2.195640	0.0523	5.23
1300	137.3660	2.653980	0.0454	4.54

reslution of NaI detector

TASK 4.1: ENERGY CALIBRATION FOR NaI DETECTOR

Source	Energy $(M e V)$	PMT signal
Cs-137	0.662	7.69656
Co-60	1.170	12.61120
Co-60	1.330	14.14840
Co-60	2.500	25.20080

Calibration curve for Nal detector

TASK 4.2: DETERMINING ENERGY OF UNKNOWN SOURCE BY Nal DETECTOR

13 items 1 item selected 203 KB

Mean	E (MeV)	E^{\prime} (KeV)	unknown source
4.64213	0.45	450.69	$\mathrm{Hf}-180 \mathrm{~m}$
6.87819	0.67	667.79	$\mathrm{Cs}-137 / \mathrm{Ba}-137 \mathrm{~m}$
7.96615	0.77	773.41	$1-132$
13.99530	1.36	1358.77	Mg-28

TASK 4.3: DETERMINING ATTENUATION COEFFICIENT OF Al

thickness (cm)	i/io
0.00	1.00000
0.15	0.75573
0.30	0.71623
0.45	0.70569
0.75	0.68596
0.90	0.67155
1.08	0.66103
1.26	0.63939

the attenuation cofficient of Al
The attenuation coefficient of Al is parameter \mathbf{b} which is 0.238

TASK 4.4: DETERMINING ATTENUATION COEFFICIENT OF Cu

Thickness (cm)	$1 / 10$
	0.00
0.20	1.00000
	0.25
0.40	0.73931
	0.80
1.00	0.73570
	1.20

attenuation coeffi cient of Cu
The attenuation coefficient of Cu is 0.628

TASK 5: ALPHA RANGE IN THE AIR

	Distance (cm)
0.0	Counts/s
0.5	440
1.0	390
1.5	360
2.0	340
2.5	320
3.0	300
3.5	280
3.8	260
4.0	260

We noticed that the no. of counts per second decreased substantially at distance equal to 3.5 cm . the no. of counts doesn't go to zero due to background radiation.

