Radiation Protection and the Safety of the Radiation Sources

STUDENT TRAINING AT JINR WAVE 6

Participant: Muhammed Sami Allam Allam

Supervisor: Said M.Shakour

TASK 1: RESOLUTION FOR BGO DETECTOR

$$R = \frac{Sigma}{Mean} * 2.35 * 100$$

- ✓ The Sigma & Mean are statistical parameters, so we should
 fit our data to get them.
- ✓ We follow the previous equation to get the Resolution.
- ✓ We plot the Resolution on Y-axis and the applied voltage on X-axis.

Voltage (V)	Mean	sigma	Resolution
1200	1.39119	0.628829	106.2219
1300	1.38702	0.281575	47.7067
1400	1.92403	0.294769	36.0029
1500	2.98400	0.465246	36.6397
1600	4.40174	0.655654	35.0040
1700	6.08761	0.836223	32.2807
1900	10.65120	1.281030	28.2637
2000	13.57300	1.646460	28.5065

As we see, the more the applied voltage, the more the resolution. But should optimize the applied voltage in which we get the highest resolution without breaking the calibration.

At
$$1300 V \rightarrow R = 47.7\%$$

At 2000 V
$$\rightarrow$$
 R = 28.5 %

TASK 2.1: ENERGY CALIBRATION FOR BGO DETECTOR

- ✓ Again, we need the Mean values for these three peaks
- ✓ We plot a graph between the Mean on Y-axis and the Energy on the x-axis

Energy (MeV)	PMT (A.U)
0.662	6.45607
1.250	12.26220
2.500	24.31920

TASK 2.2: DETERMINING ENERGY OF UNKNOWN SOURCE

The equation of the straight line in the previous graph is

$$y = 9.71 x + 0.0696$$

- ✓ The x indicates the energy
- ✓ The y indicates the PMT signal (Mean)

So, we can determine the energy of an unknown source using this equation by knowing the Mean value only

Energy =
$$\frac{(Mean - 0.0696)}{9.71}$$

Mean	Energy (MeV)	Energy2 (KeV)	unknown source
0.28968	0.02254	22.54	Sm-151
0.38146	0.03194	31.94	Mg-28
0 4 77 37	0.04176	41.76	I-129 or Rh-103m
0.58249	0.05252	52.52	Rh-104 m
1.03236	0.09859	98.59	Dy-165

TASK 3: RESOLUTION FOR NaI DETECTOR

Applied Voltage (v)	Mean	sigma	Resolution	R(%)
900	23.6267	0.701646	0.0698	6.98
1000	40.5992	1.054550	0.0610	6.10
1100	65.7567	1.589430	0.0568	5.68
1200	98.6401	2.195640	0.0523	5.23
1300	137.3660	2.653980	0.0454	4.54

TASK 4.1: ENERGY CALIBRATION FOR NaI DETECTOR

Source	Energy (MeV)	PMT signal
Cs-137	0.662	7.69656
Co-60	1.170	12.61120
Co-60	1.330	14.14840
Co-60	2.500	25.20080

TASK 4.2: DETERMINING ENERGY OF UNKNOWN SOURCE BY NaI DETECTOR

TASK 4.3: DETERMINING ATTENUATION COEFFICIENT OF AI

· ·
i/i0
1.00000
0.75573
0.71623
0.70569
0.68596
0.67155
0.66103
0.63939

The attenuation coefficient of Al is parameter b which is 0.238

TASK 4.4: DETERMINING ATTENUATION COEFFICIENT OF Cu

Thickness (cm)	1/10
0.00	1.00000
0.20	0.73931
0.25	0.73570
0.40	0.68065
0.80	0.58611
1.00	0.53827
1.20	0.48042

The attenuation coefficient of Cu is 0.628

TASK 5: ALPHA RANGE IN THE AIR

Distance (cm)	Counts/s
0.0	440
0.5	390
1.0	360
1.5	34 0
2.0	320
2.5	300
3.0	280
3.5	260
3.8	260
4.0	260

We noticed that the no. of counts per second decreased substantially at distance equal to 3.5 cm. the no. of counts doesn't go to zero due to background radiation.